• 제목/요약/키워드: Minimum Compressive Strength

검색결과 151건 처리시간 0.024초

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

Prediction of compressive strength of concrete based on accelerated strength

  • Shelke, N.L.;Gadve, Sangeeta
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.989-999
    • /
    • 2016
  • Moist curing of concrete is a time consuming procedure. It takes minimum 28 days of curing to obtain the characteristic strength of concrete. However, under certain situations such as shortage of time, weather conditions, on the spot changes in project and speedy construction, waiting for entire curing period becomes unaffordable. This situation demands early strength of concrete which can be met using accelerated curing methods. It becomes necessary to obtain early strength of concrete rather than waiting for entire period of curing which proves to be uneconomical. In India, accelerated curing methods are used to arrive upon the actual strength by resorting to the equations suggested by Bureau of Indian Standards' (BIS). However, it has been observed that the results obtained using above equations are exaggerated. In the present experimental investigations, the results of the accelerated compressive strength of the concrete are used to develop the regression models for predicting the short term and long term compressive strength of concrete. The proposed regression models show better agreement with the actual compressive strength than the existing model suggested by BIS specification.

이형 콘크리트 블록의 강도 평가방법에 관한 연구 (Development of A Strength Test Method for Irregular Shaped Concrete Block Paver)

  • 임무광;박대근;류성우;조윤호
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Statistical analysis of effects of test conditions on compressive strength of cement solidified radioactive waste

  • Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.876-883
    • /
    • 2023
  • Radioactive waste should be solidified before being disposed of in the repository to eliminate liquidity or dispersibility. Cement is a widely used solidifying media for radioactive waste, and cement solidified waste should satisfy the minimum compressive strength of the waste acceptance criteria of a radioactive repository. Although the compressive strength of waste should be measured by the test method provided by the waste acceptance criteria, the method differs depending on the operating repository of different countries. Considering the measured compressive strength changes depending on test conditions, the effect of test conditions should be analyzed to avoid overestimation or underestimation of the compressive strength during disposal. We selected test conditions such as the height-to-diameter ratio, loading rate, and porosity as the main factors affecting the compressive strength of cement solidified radioactive waste. Owing to the large variance in measured compressive strength, the effects of the test conditions were analyzed via statistical analyses using parametric and nonparametric methods. The results showed that the test condition of the lower loading rate, with a height-to-diameter ratio of two, reflected the actual cement content well, while the porosity showed no correlation. The compressive strength assessment method that reflects the large variance of strengths was suggested.

원형공을 갖는 암석의 압축강도 및 변형거동에 미치는 절리의 영향 (The influence of joints on compressive strength and deformation behavior of rock with a circular hole.)

  • 조의권;김일중;김기주;김영석
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.108-115
    • /
    • 1997
  • Uniaxial and biaxial compressive tests were conducted on limestone specimens containing artificial joints and a circular hole to investigate the influence of inclination and number of joints on compressive strength and deformation behavior of rock with a circular hole. Under uniaxial and biaxial compressive condition, the inclination of joints showing the maximum and minimum strength were 0$^{\circ}$ and 30$^{\circ}$ respectively, which was independent of the number of joints. Under uniaxial compressive condition, relative maximum strength of rock with n=1 and 3 to intact rock with a circular hole were 12.5%~82.8% and 11.4~62.5% respectively, and under biaxial compressive condition, 18.2~91.0% and 17.0~87.5% respectively. The influence of the number of joints on the decrease of compressive strength was greater under uniaxial than under biaxial compressive condition. Under uniaxial and biaxial compressive condition, axial and lateral deformations of rock showed the least values where $\alpha$=30$^{\circ}$. Under uniaxial compressive condition, axial and lateral deformation at maximum strength of rock have the increasing tendency with increase the number of joints. But they have the decreasing tendency under biaxial compressive condition. Under uniaxial and biaxial compressive conditions, axial deformation of circular hole was greater than lateral deformation without respect to the number of joints and the inclination of joints.

  • PDF

Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

  • Razavi, S.V.;Jumaat, M.Z.;Ahmed H., E.S.;Mohammadi, P.
    • Computers and Concrete
    • /
    • 제10권4호
    • /
    • pp.379-390
    • /
    • 2012
  • In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand and 0.55 water-cement ratio and 350 $kg/m^3$ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.

Predictive modeling of concrete compressive strength based on cement strength class

  • Papadakis, V.G.;Demis, S.
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.587-602
    • /
    • 2013
  • In the current study, a method for concrete compressive strength prediction (based on cement strength class), incorporated in a software package developed by the authors for the estimation of concrete service life under harmful environments, is presented and validated. Prediction of concrete compressive strength, prior to real experimentation, can be a very useful tool for a first mix screening. Given the fact that lower limitations in strength have been set in standards, to attain a minimum of service life, a strength approach is a necessity. Furthermore, considering the number of theoretical attempts on strength predictions so far, it can be seen that although they lack widespread accepted validity, certain empirical expressions are still widely used. The method elaborated in this study, it offers a simple and accurate, compressive strength estimation, in very good agreement with experimental results. A modified version of the Feret's formula is used, since it contains only one adjustable parameter, predicted by knowing the cement strength class. The approach presented in this study can be applied on any cement type, including active additions (fly ash, silica fume) and age.

고성능 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구 (An Experimental Study on Workability for Practical Use of High-Performance Concrete)

  • 양근혁;이영호
    • 한국건축시공학회지
    • /
    • 제3권1호
    • /
    • pp.139-146
    • /
    • 2003
  • The special requirements of high-performance concrete(HPC) could be enhanced property over others such as compressive strength, durability, and construction practices. In order to satisfy these requirements a series of laboratory trial mixes and following mock-up test of reinforced concrete wall at field were performed in this study. The objective of this study was to quantitatively evaluate the workability, compressive strength, and the increased heat of hydration caused by the increase of the specific weight of cement according to various variables. Six example series designed about a minimum compressive strength of 500kgf/$\textrm{cm}^2$ at 28 days, and an approximately slump and slump flow of 25cm and 60cm respectively were tested. The selection process of the specific weight of water and the percentage of fly-ash transposition determined to be most suitable for the production of HPC is presented in the following paper.

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

HSA800 강재를 적용한 합성기둥의 축방향 내력 평가 (The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel)

  • 이명재;김철환;김희동
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.473-483
    • /
    • 2014
  • 건축구조기준에 따라 HSA800 강재의 합성기둥 적용시에는 실험 또는 해석적 방법을 통하여 적용의 타당성을 검증해야 한다. 이에 본 연구에서는 합성기둥으로 주로 사용되는 H형강 매입형, 각형강관 및 원형강관 충전형 합성기둥 단면을 대상으로 HSA800 강재를 적용한 단주압축실험을 실시하고, 이를 통하여 축방향 내력 및 건축구조기준의 합성기둥 설계압축강도 설계식 적용의 타당성을 평가하였다. 실험결과 매입형 합성기둥의 경우 HSA800 강재의 설계기준항복강도를 저감없이 사용하기 위해서는 건축구조기준의 설계압축강도 산정식의 조정이 필요한 것으로 나타났으며, 이를 위해 띠철근 간격 조정 및 콘크리트의 유효단면적 사용을 제안하였다. 충전형 합성기둥의 경우에는 각형, 원형충전강관 기둥 모두 별도의 강도 저감이나 설계압축강도 산정식의 조정 없이 사용이 가능할 것으로 판단된다.