• 제목/요약/키워드: Minimally invasive stabilization

검색결과 12건 처리시간 0.015초

Fragility Fractures of the Pelvis and Sacrum: Current Trends in Literature

  • Erick Heiman;Pasquale Jr. Gencarelli;Alex Tang;John M. Yingling;Frank A. Liporace;Richard S. Yoon
    • Hip & pelvis
    • /
    • 제34권2호
    • /
    • pp.69-78
    • /
    • 2022
  • Fragility fractures of the pelvis (FFP) and fragility fractures of the sacrum (FFS), which are emerging in the geriatric population, exhibit characteristics that differ from those of pelvic ring disruptions occurring in the younger population. Treatment of FFP/FFS by a multidisciplinary team can be helpful in reducing morbidity and mortality with the goal of reducing pain, regaining early mobility, and restoring independence for activities of daily living. Conservative treatment, including bed rest, pain therapy, and mobilization as tolerated, is indicated for treatment of FFP type I and type II as loss of stability is limited with these fractures. Operative treatment is indicated for FFP type II when conservative treatment has failed and for FFP type III and type IV, which are displaced fractures associated with intense pain and increased instability. Minimally invasive stabilization techniques, such as percutaneous fixation, are favored over open reduction internal fixation. There is little evidence regarding outcomes of patients with FFP/FFS and more literature is needed for determination of optimal management. The aim of this article is to provide a concise review of the current literature and a discussion of the latest recommendations for orthopedic treatment and management of FFP/FFS.

Demineralized Bone Matrix (DBM) as a Bone Void Filler in Lumbar Interbody Fusion : A Prospective Pilot Study of Simultaneous DBM and Autologous Bone Grafts

  • Kim, Bum-Joon;Kim, Se-Hoon;Lee, Haebin;Lee, Seung-Hwan;Kim, Won-Hyung;Jin, Sung-Won
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권2호
    • /
    • pp.225-231
    • /
    • 2017
  • Objective : Solid bone fusion is an essential process in spinal stabilization surgery. Recently, as several minimally invasive spinal surgeries have developed, a need of artificial bone substitutes such as demineralized bone matrix (DBM), has arisen. We investigated the in vivo bone growth rate of DBM as a bone void filler compared to a local autologous bone grafts. Methods : From April 2014 to August 2015, 20 patients with a one or two-level spinal stenosis were included. A posterior lumbar interbody fusion using two cages and pedicle screw fixation was performed for every patient, and each cage was packed with autologous local bone and DBM. Clinical outcomes were assessed using the Numeric Rating Scale (NRS) of leg pain and back pain and the Korean Oswestry Disability Index (K-ODI). Clinical outcome parameters and range of motion (ROM) of the operated level were collected preoperatively and at 3 months, 6 months, and 1 year postoperatively. Computed tomography was performed 1 year after fusion surgery and bone growth of the autologous bone grafts and DBM were analyzed by ImageJ software. Results : Eighteen patients completed 1 year of follow-up, including 10 men and 8 women, and the mean age was 56.4 (32-71). The operated level ranged from L3/4 to L5/S1. Eleven patients had single level and 7 patients had two-level repairs. The mean back pain NRS improved from 4.61 to 2.78 (p=0.003) and the leg pain NRS improved from 6.89 to 2.39 (p<0.001). The mean K-ODI score also improved from 27.33 to 13.83 (p<0.001). The ROM decreased below 2.0 degrees at the 3-month assessment, and remained less than 2 degrees through the 1 year postoperative assessment. Every local autologous bone graft and DBM packed cage showed bone bridge formation. On the quantitative analysis of bone growth, the autologous bone grafts showed significantly higher bone growth compared to DBM on both coronal and sagittal images (p<0.001 and p=0.028, respectively). Osteoporotic patients showed less bone growth on sagittal images. Conclusion : Though DBM alone can induce favorable bone bridging in lumbar interbody fusion, it is still inferior to autologous bone grafts. Therefore, DBM is recommended as a bone graft extender rather than bone void filler, particularly in patients with osteoporosis.