• Title/Summary/Keyword: Miniaturized impact specimen

Search Result 5, Processing Time 0.021 seconds

A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens (소형 샤르피 충격시험편에서의 파괴응력에 관한 연구)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Lee, Dae-Yeol;Kim, Si-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF

Normalization of DBTT Size Effect far Aged 1Cr-lMo-0.25V Steel (열화된 1Cr-1Mo-0.25V강의 DBTT 크기효과 보정에 관한 연구)

  • Nam, Seung-Hun;Kim, Eom-Gi;Lee, Dae-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2109-2115
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior when it is difficult to sample the material enough for the test. In this study, two kinds of miniaturized Charpy impact specimens(i.e., miniaturized specimen with side groove and without side groove) of aged 1Cr- lMo-0.25V steel were prepared and tested. The relationship between the extent of degradation in terms of ductile brittle transition temperature(DBTT) and the fracture stress of 1Cr-1Mo-0.25V steel was established. The fracture stress obtained from miniaturized specimen without side groove turned out to be linearly related with the DBTT of standard specimen. Therefore the fracture toughness of aged turbine rotor steel might be evaluated by the fracture stress. In addition, the correlation between DBTT of standard specimen and that of miniaturized specimen was investigated. As the results of normalizing DBTT by maximum elastic tensile stress, the normalized DBTT of miniaturized specimen without side groove allows one to estimate that of standard specimen.

Transition Temperature Evaluation of 1Cr-1Mo-0.25V Steel Using Miniaturized Charpy Impact Specimen (소형 샤르피 충격시험편을 이용한 1Cr-1Mo-0.25V강의 천이온도 평가)

  • Nahm Seung Hoon;Kim Si Cheon;Lee Hae Moo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.42-46
    • /
    • 1998
  • Miniaturized specimen technology Permits mechanical behavior to be determined using a minimum volume of material. The technology is useful in case of not collecting a large amount of materials from industrial equipments. Five kinds of accelerated degradation materials were prepared by isothermal aging heat treatment at $630^{\circ}C$. Three kinds of specimens were prepared for impact testing. In order to increase plastic constraint of subsize specimen, side-groove was introduced. Results between subsize and full size impact testing were compared. Size effects correlations were developed for the impact properties of turbine rotor material. These correlations successfully predict the ductile brittle transition temperature (DBTT) of full size Charpy impact specimens based on subsize specimen data.

  • PDF

Degradation Damage Evaluation for Turbine Structural Components by Electrochemical Reactivation Polarization Test (전기화학적 재활성화 분극시험에 의한 터빈부재의 열화손상 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Lyu, Dae-Young;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1241-1249
    • /
    • 2002
  • The extent of materials deterioration can be evaluated accurately by mechanical test such as impact test or creep test. But it is almost impossible to extract a large test specimen from in-service components. Thus material degradation evaluation by non-destructive method is earnestly required. In this paper, the material degradation for virgin and several aged materials of a Cr-Mo-V steel, which is an candidated as structural material of the turbine casing components for electric power plant, is nondestructively evaluated by reactivation polarization testing method. And, the results obtained from the test are compared with those in small punch(SP) tests recommended as a semi-nondestructive testing method using miniaturized specimen. In contrast to the aged materials up to 1,000hrs which exhibit the degradation behaviors with increased ${\Delta}[DBTT]_{SP}$, the improvement of mechanical property can be observed on the 2,000hrs and 3,000hrs aged materials. This is because of the softening of material due to the carbide precipitation, the increase of ferritic structures and the recovery of dislocation microstructure by long-time heat treatment. The reactivation rates($I_R/I_{Crit},\;Q_R/Q_{Crit}$) calculated by reactivation current densityt ($I_R$) and charge($Q_R$) in the polarization curves exhibit a good correlation with ${\Delta}[DBTT]_{SP}$ behaviors.