• Title/Summary/Keyword: Miniaturization Circular-Type Microstrip Patch Antenna

Search Result 4, Processing Time 0.017 seconds

Radially Corrugated Circular Microstrip Patch Antenna for Miniaturization (소형화를 위한 방사 주름 원형 마이크로스트립 패치 안테나)

  • 이성민;김종래;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1233-1238
    • /
    • 2003
  • In this paper, radially corrugated circular-type microstrip patch antenna was devised and manufactured for GPS (center frequency: 1.575 GHz). Radially corrugated circular-type microstrip patch antenna having radiational corrugation-patch contributed to add size reduction ratio by lowering the resonant frequency because the edge current also has the extended and perpendicular path. As a result, radially corrugated circular-type microstrip patch antenna has 28 % area reduction than planer circular-type patch antenna for linear polarization and 27.7 % area reduction than planer circular-type patch antenna for circular polarization. Radially corrugated circular-type microstrip patch antenna is suitable for miniaturized receive antenna for GPS which has the characteristic of gain 2.1 dBd, axiai ratio 1.3 dB, 2 dB axial bandwidth 15 MHz(0.9 %).

Miniaturization of Microstrip Antenna Using 'L' Shaped Plate ('L'자형 Plate를 이용한 마이크로스트립 안테나의 소형화)

  • Jang Yon-Jeong;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.501-510
    • /
    • 2005
  • In this paper, the miniaturized linear and circular polarization microstrip antennas are designed and fabricated at the resonant frequency of 1.575 GHz. To miniaturize the microstrip patch antenna(MPA), the 'L' type plates are attached under the rectangular microstrip patch. In case of the linear polarization, the size of the microstrip antenna attached the 14 plates is reduced to $67.9\%(47mm{\times}47mm)$ compared with general $MPA(83mm{\times}83mm)$. The return loss and -10 dB bandwidth are -34.4 dB and 49 $MHz(3.1\%)$. And the radiation pattern is broad through the size reduction of the patch. Also in case of the circular polarization, the size of the microstrip antenna with 13 plates is reduced to $54.6\%(53mm{\times}54mm)$ compared with the general $MPA(76mm{\times}83mm)$. The axial ratio is 1.37dB at 1.575 GHz, the 2 dB axial ratio bandwidth is 14 $MHz(0.8\%)$. As that result, we could confirm that 3-dimensional structure with attached 'L' shaped plate is proper form for the miniaturization of linear and circular polarization microstrip antenna.

Fabrication and Characterization of Miniaturized HTS Microstrip Antennas Using "H"-type Resonator (H 형태 공진기를 이용한 소형화된 HTS 안테나의 제작 및 특성 해석)

  • 정동철;윤창훈;황종선;최창주
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.282-287
    • /
    • 2003
  • ″H″ type resonator has the advantage for the miniaturization of high-T7 superconducting (HTS) microstrip antenna in comparison with the conventional microstrip antenna such as rectangular type or circular type. In this paper we designed miniaturized HTS antennas using this "H"-type resonator and reported the characteristics of our antennas including return loss, bandwidth, radiation patterns, efficiency and so on. To fabricate the "H" type antenna, HTS YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) thin films were deposited on MgO substrates using rf-magnetron sputtering. For comparison between normal conducting antennas and superconducting antennas, the gold antennas with the same dimension were also fabricated. An aperture coupling was used for impedance matching between 50 $\Omega$ feed line and HTS radiating patch. The ″H" type superconducting antenna showed the performance of 1.38 in SWR, 26 % in efficiency, and 13.8 dB in the return loss superior to the normal conducting counterpart.

3-Dimensinal Microstrip Patch Antenna for Miniaturization (소형화를 위한 3차원 구조마이크로스트립 패치 안테나)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • In this paper, to reduce the resonant length of patch, microstrip patch antenna of linear polarization which is suppressed at two radiation edges is designed and fabricated at the frequency of 1.575 GHz. The result is like that the resonant length of patch is 45 mm and the length reduction effect is 43.8 % when it is compared with that(80 mm) of plane type. The gain is 4.4 dBd and -3 dB beamwidths are 112$^{\circ}$ and 66$^{\circ}$ in the E-plane and H-plane, respectively. Also, to reduce the size of patch, microstrip patch antennas those are suppressed at four radiating comers are designed and fabricated at the same frequency in the linear and circular polarization, respectively. For linear polarization, at the 1.2 of width/length(W/L) ratio, the patch area is 53 mm $\times$ 63.6 mm and the size reduction effect is 56.1 % when compared with that(80 mm $\times$ 96 mm) of plane type. The gain is 4.3 dBd and the -3 dB beamwidths are 120$^{\circ}$ and 78$^{\circ}$ in the E-plane and H-plane, respectively. For circular polarization, the patch size(54.2 mm $\times$ 61.5 mm) is reduced by 47.2 % than that(76 mm $\times$ 83 mm) of plane type. -3 dB beamwidth of horizontal polarization in the z-x plane and vortical polarization in the y-z plane are 108$^{\circ}$ and 93$^{\circ}$, respectively and this means the increasement in both planes by 52$^{\circ}$ and 27$^{\circ}$ than those of plane type. The maximum gain is 2.5 dBd in the horizontal polarization in the z-x plane. Axial ratio is 1.5 dB at 1.575 GHz and the 2 dB axial ratio bandwidth(ARBW) is 20 MHz(1.3 %).