• Title/Summary/Keyword: Miniature pressure

Search Result 61, Processing Time 0.028 seconds

Development of high sensitivity pressure sensor using optical fiber (광섬유를 이용한 고감도 압력센서 개발)

  • 이권형;조경재;김현철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.478-481
    • /
    • 1995
  • This paper presents the system demonstrator for an optical fiber sensor system developed as a technological evaluator suitable for generic sensric sensing applications. The new type of fiber-optic sensor employed a diaphragm displacement transforms pressure into optical intensity. Form this sensing technique, we can know the variation of source intensity, the loss of a optical fiber, and the reflectivity of the diaphragm surface. Experimental results are applied to the low-pressure transducer suitable for measuring miniature pressure.

  • PDF

Deformation Characteristics of Miniature Tensile Specimens of a SA 508 C1.3 Reactor Pressure Vessel Steel

  • Byun, Thak-Sang;Chi, Se-Hwan;Hong, Jun-Hwa;Jeong, Ill-Seok;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.182-187
    • /
    • 1996
  • Deformation characteristics of miniature plate tensile specimens have been studied to develop the thickness requirement and a correlation to estimate the mechanical properties of bulk material from miniature specimen data. The material used was a SA 508 C1.3 reactor pressure vessel steel and the thicknesses of miniature tensile specimens varied from ().12 m to 2 mm. The effects of thickness on the tensile deformation properties such as strength, ductility, and necking characteristics were analyzed. The yield and ultimate tensile strengths were independent of specimen thickness when the thickness was larger than about 0.2 mm. The uniform and total elongations decreased as the specimen thickness decreased. It was also observed that the uniform strain component in the width direction decreased with decrease in the specimen thickness, however, that in the thickness direction was rather constant in total thickness range studied. Based on this observation and a relationship between the necking angle and the ratio between strain components, a correlation between the uniform elongations of miniature specimen and standard specimen was derived. The uniform elongations calculated by this new correlation agreed well with the measured values.

  • PDF

A Study on the Heat Transfer Enhancement of Miniature loop Heat Pipes by Using the Cu Nanofluids

  • Kim, Young-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Tanshen, Md.Riyad;Lee, Dae-Chul;Ji, Myoung-Kuk;Bae, Kang-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • An experimental study was carried out to understand the heat transfer performance of a miniature loop heat pipes using water-based copper nanoparticles suspensions as the working fluid. The suspensions consisted of deionized water and copper nanoparticles with an average diameter of 80 nm. Effects of the cupper mass concentration and the operation pressure on the average evaporation and condensation heat transfer coefficients, the critical heat flux and the total heat resistance of the mLHPs were investigated and discussed. The pressure frequency also depends upon the evaporator temperature which has been maintained from $60^{\circ}C$ to $90^{\circ}C$. The Investigation shows 60% filling ratio gives the highest inside pressure magnitude of highest number pressure frequency at any of setting of evaporator temperature and 5wt% results the lowest heat flow resistance.

Development of miniature weight sensor using piezoresistive pressure sensor (압저항형 압력센서를 이용한 초소형 하중센서의 개발)

  • Kim, Woo-Jeong;Cho, Yong-Soo;Kang, Hyun-Jae;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 2005
  • Strain gauge type load cell is used widely as weight sensor. However, it has problems such as noise, power consumption, high cost and big size. Semiconductor type piezoresistive pressure sensor is practically used in recent for low hysteresis, good linearity, small size, light weight and strong on vibration. In this paper, we have fabricated the piezoresistive pressure sensor and packaged the miniature weight sensor. We packaged the miniature weight sensor by flip-chip bonding between die and PCB for durability, because the weight sensor is directly contacted on a physical solid distinct from air and oil pressure. We measured the characteristics of the weight sensor, which had the output of $10{\sim}80$ mV on the weight range of $0{\sim}2$ kg. In the result, we could fabricate the weight sensor with an accuracy of 3 %FSO linearity.

Development of a Miniature Aerosol Separator for a Black Carbon Measuring Instrument (블랙카본 측정기용 초소형 사이클론 집진기 개발)

  • An, Ik-Hyun;Lim, Jun-Hyung;Lee, Hyo-Young;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.42-48
    • /
    • 2020
  • Given the increasing interest in air pollution, several technologies to measure black carbon (BC) aerosol particles have been developed. As most BC aerosol particles are smaller than 1 ㎛, it is necessary to pre-separate the particles by size before a BC measuring instrument samples the aerosol particles. In this study, a miniature cyclone separator for portable BC measuring instruments was developed. A numerical approach was used to design the miniature cyclone separator with operating flow rates of 50, 100, or 150 mLPM, and then a prototype cyclone separator was manufactured for experimental validation. The numerical results of the cut-off size and pressure drop of the miniature cyclone separator agreed well with the experimental data. The cut-off sizes of the miniature cyclone separator were determined to be 2.9, 0.94, and 0.63 ㎛ for operating flow rates of 50, 100, and 150 mLPM, respectively. Thus, the miniature cyclone separator is suitable for use as a sampling inlet for the portable black carbon measuring instrument to sample BC aerosol or PM2.5 aerosol.

A Study on the Structural Characteristics of Miniature Metal Bellows in Joule-Thomson Micro-Cryocooler (줄-톰슨 마이크로 냉각기용 소형 금속 벨로우즈의 구조적 특성에 관한 연구)

  • Lee, Seung-Ha;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.95-102
    • /
    • 2008
  • A miniature metal bellows is used to minimize the excessive flow of the cryogenic gas in Joule-Thomson micro cryocooler. It is made of metal alloy and its geometry is axisymmetric. The bellows is filled with high pressure gas. It contracts or expands in the axial direction for a wide change of temperature, because the pressure and volume inside the bellows must be satisfied with state equation of the gas. Therefore, in order to design the bellows in Joule-Thomson micro-cryocooler, it is important to evaluate deformation of the bellows under internal pressure exactly. Considering geometric nonlinearity, deformations analysis of the bellows were obtained by a commercial finite element code ANSYS, The bellows was modeled by 3-node axisymmetric shell elements with reduced integration. Experiments were also performed to prove the validity of proposed numerical analysis. The results by numerical analysis and experiments were shown in good agreements.

The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack (소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성)

  • Kim, Byung-Ju;Yim, Sung-Dae;Sohn, Young-Jun;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Young-Chai
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Case Studies on the Field Application of Miniature CPT's in South Korea (소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석)

  • Yoon, Sung-Soo;Hwang, Dae-Jin;Kim, Jun-Ou;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition (극저온까지 온도변화에 따른 질소 충전 소형 금속 벨로우즈의 변형 해석)

  • Lee, Seung-Ha;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2009
  • Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.