• Title/Summary/Keyword: Miniature heat pipe

Search Result 14, Processing Time 0.023 seconds

The Experimental Study of Miniature Heat Pipes for Cooling Microprocessor Chips (전자칩 냉각을 위한 소형 히트 파이프에 대한 실험적 연구)

  • Lee, S.M.;Kim, H.B.;Yang, J.S.;Lee, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.353-358
    • /
    • 2000
  • This paper presents the experimental investigation about miniature heat pipe for notebook PC. The focus of analysis is the operating temperature not to exceed $65^{\circ}C$ maximum allowable CPU surface temperature. Copper is used to heat pipe material and brass is wick material, and working fluid is selected to water. This cooling system is heat spreader method using a aluminum plate, since this method is most commonly used. According to the present study, heat for 3mm heat pipe, 8W, and for 4mm heat pipe, 10W, is found to power dissipation limit respectively, Soon after this investigation, sufficient long term life test should be followed.

  • PDF

Analysis of Woven Wire Wick Structure for a Miniature Heat Pipe (소형 히트파이프용 편조 윅의 형상 해석)

  • 이진성;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Woven wire wick is very effective structure because of its easiness to insert inside of pipe for a miniature heat pipe. The present study was conducted to investigate the effect of the effective flow passage with respect to wire helix angle. Also effective thermal conductivity were examined by defining mean porosity considering effective liquid flow passages. Effective heat transfer area is varied with respect to wire helix angle, and in the range of $\thet=60~65^{\circ}C$, heat transfer area is decreased about 15~20%. Permeability of woven wire wick shows similar value of 200 mesh screen wick. And comparison of experimental results on effective thermal conductivity shows a fairly good agreement with the analytical results.

  • PDF

A Study on Cooling Characteristics of Miniature Heat Pipes with Woven-Wired Wick (편조형 윅을 갖는 소형 히트파이프의 냉각특성에 관한 연구)

  • 문석환;김광수;최춘기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.227-234
    • /
    • 2000
  • An experimental study was performed for understanding the limiting power and heat transfer characteristics of an MHP having the diameter of 3 or 4 mm which could be applied to cooling of miniature electronic equipment such as the notebook PC CPU etc. The experimental parameters which are inclination, structure of the wick, the length of the condenser and the total heat pipe were considered. The MHP with a woven-wired wick has the advantages of the improvement in capillary limit, the effective attachment tightly toward wall and the convenience in construction of wick. Cooling performance of the present MHP was compared with that of MHP with grooved, fine fiber and sintered type wick which were applied by existing enterprises. With respect to the inclination of$ -5^{\circ}$ , an MHP having the diameter of 3 or 4 mm shows the limiting power of 6~14 W. Therefore, it is expected that the MHP of the present study has sufficient applicability of cooling of notebook PC of which the amount of heat generated is about 12 W.

  • PDF

Application of Miniature Heat Pipe for Notebook PC Cooling (노트북 PC CPU 냉각용 소형 히트파이프 Packaging 연구)

  • Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.799-803
    • /
    • 2001
  • Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4mm diameter is pressed to 2mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness or pressing is shown to be within the range of 2mm∼2.5mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4mm is reduced to 0.25mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool a notebook PC shows the stability as cooling system since T(sub)j(Temperature of Processor Junction) satisfy a demand condition of 0∼100$\^{C}$ under 11.5W of CPU heat.

A Study on the Miniature Loop Heat Pipe with Non-inverted Meniscus type Capillary Structure (Non-inverted Meniscus식 모세관 구조물을 이용한 소형 루프히트파이프에 관한 실험적 연구)

  • Chung, Won-Bok;Park, Soo-Yong;Doctarau, Viachaslau-V.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2142-2147
    • /
    • 2007
  • Experimental study was conducted to evaluate the performance of a miniature loop heat pipe (MLHP) with non-inverted meniscus type capillary structure. All parts of MLHP in this study were made of copper including the capillary structure and the distilled water was used as a working fluid of MLHP. The outer diameter of evaporator was 9 mm and its length was 119 mm. The effective pore size of the capillary structure was 30 micron and its porosity was 60%. The vapor transport line, the liquid transport line and the condenser were consisted of single 4.0 mm copper tube. The distance between the evaporator and the condenser region was 200 mm and the length of the loop was 969 mm. This MLHP was operated successfully at any orientation but the gravity highly influenced the thermal performance of the MLHP. The maximum thermal load was 130 watts at the bottom heat mode and the 20 watts at the top heat mode.

  • PDF

A Study on the Heat Transfer Enhancement of Miniature loop Heat Pipes by Using the Cu Nanofluids

  • Kim, Young-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Tanshen, Md.Riyad;Lee, Dae-Chul;Ji, Myoung-Kuk;Bae, Kang-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • An experimental study was carried out to understand the heat transfer performance of a miniature loop heat pipes using water-based copper nanoparticles suspensions as the working fluid. The suspensions consisted of deionized water and copper nanoparticles with an average diameter of 80 nm. Effects of the cupper mass concentration and the operation pressure on the average evaporation and condensation heat transfer coefficients, the critical heat flux and the total heat resistance of the mLHPs were investigated and discussed. The pressure frequency also depends upon the evaporator temperature which has been maintained from $60^{\circ}C$ to $90^{\circ}C$. The Investigation shows 60% filling ratio gives the highest inside pressure magnitude of highest number pressure frequency at any of setting of evaporator temperature and 5wt% results the lowest heat flow resistance.

A Review on Cooling Technologies for Micro and Miniature Devices and Systems

  • Yoon, Jae-Sung;Choi, Jong-Won;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • As electric and mechanical devices have been miniaturized and highly integrated, heat generation per unit volume has been greatly increased. Therefore, effective cooling methods for micro and miniature systems have emerged as critical issues nowadays and a lot of studies have been carried out to find an optimum cooling strategy. This paper reviews recent researches on the cooling technologies which are mainly based on micro-fabrication processes. Design, development, experiments and numerical analysis of various cooling devices are discussed and their characteristics, problems and advantages are compared.

An Experimental Study on the Heat Transfer Characteristics in Miniature Heat Pipes with Screen Wick (스크린 윅을 삽입한 소형 히트파이프에서 열전달 특성에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Ko, Y.K.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.572-578
    • /
    • 2001
  • This study is to research the heat transfer characteristics in copper-water heat pipes with screen wick, #100. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size is smaller than before. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle ${-6}^{\circ}$, #100 2layer screen mesh is shown the best heat transfer performance.

  • PDF