• 제목/요약/키워드: Miniature Neutron Source Reactor

검색결과 5건 처리시간 0.016초

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)

  • Ahmadi, M.;Rabiee, A.;Pirouzmand, A.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1776-1783
    • /
    • 2019
  • To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.

Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

  • Agbo, Sunday Arome;Ahmed, Yusuf Aminu;Ewa, Ita Okon Bassey;Jibrin, Yahaya
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.673-683
    • /
    • 2016
  • This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was $3.7{\pm}0.2kW$, $15.2{\pm}1.2kW$, and $30.7{\pm}2.5kW$, respectively. The thermal power obtained by the slope method at half power and full power was $15.8{\pm}0.7kW$ and $30.2{\pm}1.5kW$, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

Neutronic assessment of BDBA scenario at the end of Isfahan MNSR core life

  • Ahmadi, M.;Pirouzmand, A.;Rabiee, A.
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1037-1042
    • /
    • 2018
  • The present study aims to assess the excess induced reactivity in a Miniature Neutron Source Reactor (MNSR) for a Beyond Design Basis Accident (BDBA) scenario. The BDBA scenario as defined in the Safety Analysis Report (SAR) of the reactor involves sticking of the control rod and filling of the inner and outer irradiation sites with water. At the end of the MNSR core life, 10.95 cm of Beryllium is added to the top of the core as a reflector which affects some neutronic parameters such as effective delayed neutrons fraction (${\beta}_{eff}$), the reactivity worth of inner and outer irradiation sites that are filled with water and the reactivity worth of the control rod. Given those influences and changes, new neutronic calculations are required to be able to demonstrate the reactor safety. Therefore, a validated MCNPX model is used to calculate all neutronic parameters at the end of the reactor core life. The calculations show that the induced reactivity in the BDBA scenario increases at the end of core life to $7.90{\pm}0.01mk$ which is significantly higher than the induced reactivity of 6.80 mk given in the SAR of MNSR for the same scenario but at the beginning of the core's life. Also this value is 3.90 mk higher than the maximum allowable operational limit (i.e. 4.00 mk).