• Title/Summary/Keyword: Miniature Model

Search Result 119, Processing Time 0.023 seconds

Modeling and Vibration Control of the Miniature Universal Testing Machine (소형 재료시험기의 모델링 및 진동 제어)

  • Bok, Jin;Kim, Young-Shik;Kweon, Hyeon-Kyu;Kim, In-Soo;Choi, Seong-Dae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.476-481
    • /
    • 2004
  • This paper proposes the modeling scheme of the Miniature Universal Testing Machine (MUTM) composed of 36 thin-beam-type bimorph PZTs and the control algorithm to minimize the residual vibration of the MUTM in the dynamic testing of specimens. In the operation of the MUTM, hysteresis, residual displacement and vibration of it are major issues. From the analysis of the MUTM behaviors, the hysteresis is described by the curving fitting scheme with the function of an input voltage. The dynamic characteristics of the MUTM are identified by the frequency domain modeling technique base on the experimental data. The interest bandwidth is focused on 125-315HZ for effective modeling and control. For the robust vibration control of the MUTM, the sliding mode control and the Kalman filter as observer are proposed. The paper also proposes the best input signal type to operate the MUTM effectively. The feasibility of the proposed modeling scheme and control algorithm are tested and verified experimentally.

  • PDF

A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator

  • Hong, Yong-Ju;Park, Seong-Je;Choi, Young-Don
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2010
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, optoelectronic device, and integrated circuits of micro electronics. The typical J-T refrigerator consists of the recuperative heat exchanger with the double helical tube and fin configuration, J-T nozzle, a mandrel, Dewar and a compressed gas storage bottle. In this study, to predict the thermodynamic behaviors of the refrigerator with a compressed gas storage bottle during the cool-down time, numerical study of transient characteristics for a J-T refrigerator was developed. A simplified transient one.dimensional model of the momentum and energy equations was simultaneously solved to consider the thermal interactions of the each component of the refrigerator. To account for effects of the thermal mass of the solid, the heat capacities of the tube, fins, mandrel and Dewar are considered. The results show the charged gas pressure of the gas storage bottle has significant effects on the performance of the J-T refrigerator. At the elevated gas pressure of the gas storage bottle, the large capacity of the compressed gas storage does not need to get the fast cool-down performance of the J-T refrigerator in the cool-down stage.

Study on miniature experiment of marine wind deflector with PIV (PIV를 이용한 선박용 기류전향판의 축소모형 실험에 관한 연구)

  • Jeong, Daun;Cho, Dae-Hwan;Jeong, Ha-Gyun;Han, Won-Heui
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.276-278
    • /
    • 2012
  • This study was performed to investigate wake flow and unsteady flow characteristics using a model for actual shape of a wind breaker and visualization of flow through the particle image velocity. three control angle of flap were selected and instantaneous velocity distributions and flow characteristics were experimently investigated. It is found that as the control angle increase, the flows are characterized by the appearance of the growth of recirculation region.

  • PDF

Xenograft Failure of Pulmonary Valved Conduit Cross-linked with Glutaraldehyde or Not Cross-linked in a Pig to Goat Implantation Model

  • Kim, Dong Jin;Kim, Yong Jin;Kim, Woong-Han;Kim, Soo-Hwan
    • Journal of Chest Surgery
    • /
    • v.45 no.5
    • /
    • pp.287-294
    • /
    • 2012
  • Background: Biologic valved grafts are important in cardiac surgery, and although several types of graft are currently available, most commercial xenografts tend to cause early disfiguration due to intimal proliferation and calcification. We studied the graft failure patterns on non-fixed and glutaraldehyde-fixed pulmonary xenograft in vivo animal experiment. Materials and Methods: Pulmonary valved conduits were obtained from the right ventricular outflow tract of eleven miniature pigs. The grafts were subjected to 2 different preservation methods; with or without glutaraldehyde fixation: glutaraldehyde fixation (n=7) and non-glutaraldehyde fixation (n=4). The processed explanted pulmonary valved grafts of miniature pig were then transplanted into eleven goats. Calcium quantization was achieved in all of the explanted xenograft, hemodynamic, histopathologic and radiologic evaluations were performed in the graft which the transplantation period was over 300 days (n=7). Results: Grafts treated with glutaraldehyde fixation had more calcification and conduit obstruction in mid-term period. Calcium deposition also appeared much higher in the glutaraldehyde treated graft compared to the non-glutaraldehyde treated graft (p<0.05). Conclusion: The present study suggests that xenografts prepared using glutaraldehyde fixation alone appeared to have severe calcification compared to the findings of non-glutaraldehyde treated xenografts and to be managed with proper anticalcification treatment and novel preservation methods. This experiment gives the useful basic chemical, histologic data of xenograft failure model with calcification for further animal study.

A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG (홍대용 통천의의 혼천의 연구)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

A Study on the Indoor Environmental Factors of Granite Dome Models with Different Envelop Materials during the Summer Season

  • Kong, Sung-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • During the summer season, it is very hot and humid in Korea. So the humidity is an important factor regarding the environmental control function of building envelops. The purpose of this research is to measure and analyze the characteristics of such environmental factors as relative humidity, dry bulb temperature and air velocity varies both in the clay and cement envelop structures using granite dome models during the summer time. The interior relative humidity of the clay model is constant regardless of exterior humidity although a little range of variation is shown in comparison to the cement model.

  • PDF

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

A study on the characteristics of environmental factors of granite dome models with different envelope structures in winter (외피 유형별 석재 모형돔의 동절기 환경 특성에 관한 연구)

  • 공성훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.642-646
    • /
    • 1999
  • Factors governing the rate of heat exchange comprise the air temperature, the speed of air movement, relative humidity, and relation indoors. Recently, there are many researches on the transient analysis of indoor environmental factors such as the dry bulb temperature, relative humidity and air velocity in miniature models. The purpose of this study is to measure the environmental factors and to analyze and evaluate the characteristics of indoor environment with the different envelope structures using a granite dome model. According to the variation of humidity, the state of interior relative humidity for clay model has an equal tendency, although a little range of variation is shown in comparison to the cement model.

  • PDF

Centrifuge Modelling of Slag Compaction Pile (슬래그 다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.191-197
    • /
    • 2002
  • This paper is experimental and numerical research results of performing centrifuge model tests to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. In order to find the geotechnical engineering characteristics of the soft clay and the slag used in centrifuge model experiments, basic soil property tests, consolidation test, permeability tests and triaxial compression tests were performed. For centrifuge model tests, slags with changing relative density were used and their bearing capacity, stress concentrations in between pile and soft clay, settlement characteristics, and failure modes were investigated. As a results of centrifuge model tests, it was found that the bearing, capacity of model was increased with increasing density of slag pile and general shear failures were occured. Miniature soil pressure gauges were installed on model pile and soft ground respectively and thus vertical stress acting on them were measured. Stress concentration ratio was found to be in the range of 2.0~3.0. Bearing capacity obtained from the model test with slag was greater than that from the model test with a sand having the identical layout to each other. Thus it was confirmed the slag was an appropriate substitution of pile for sand.

  • PDF