• Title/Summary/Keyword: Mini-implant

Search Result 114, Processing Time 0.027 seconds

The effects of different pilot-drilling methods on the mechanical stability of a mini-implant system at placement and removal: a preliminary study (인조골에서 식립 방법이 교정용 미니 임플란트의 기계적 안정성에 미치는 영향에 대한 예비연구)

  • Cho, Il-Sik;Choo, Hye-Ran;Kim, Seong-Kyun;Shin, Yun-Seob;Kim, Duck-Su;Kim, Seong-Hun;Chung, Kyu-Rhim;Huang, John C.
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.354-360
    • /
    • 2011
  • Objective: To investigate the effects of different pilot-drilling methods on the biomechanical stability of self-tapping mini-implant systems at the time of placement in and removal from artificial bone blocks. Methods: Two types of artificial bone blocks (2-mm and 4-mm, 102-pounds per cubic foot [102-PCF] polyurethane foam layered over 100-mm, 40-PCF polyurethane foam) were custom-fabricated. Eight mini-implants were placed using the conventional motor-driven pilot-drilling method and another 8 mini-implants were placed using a novel manual pilot-drilling method (using a manual drill) within each of the 2-mm and 4-mm layered blocks. The maximum torque values at insertion and removal of the mini-implants were measured, and the total energy was calculated. The data were statistically analyzed using linear regression analysis. Results: The maximum insertion torque was similar regardless of block thickness or pilot-drilling method. Regardless of the pilot-drilling method, the maximum removal torque for the 4-mm block was statistically higher than that for the 2-mm block. For a given block, the total energy at both insertion and removal of the mini-implant for the manual pilot-drilling method were statistically higher than those for the motor-driven pilot-drilling method. Further, the total energies at removal for the 2-mm block was higher than that for the 4-mm block, but the energies at insertion were not influenced by the type of bone blocks. Conclusions: During the insertion and removal of mini-implants in artificial bone blocks, the effect of the manual pilot-drilling method on energy usage was similar to that of the conventional, motor-driven pilot-drilling method.

Mandibular second and third molar protraction with orthodontic mini-implants: case report (교정용 미니임플란트를 이용한 하악 제2, 3대구치의 전방이동 : 증례보고)

  • Choi, Sung-Kwon;Kang, Kyung-Hwa
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.654-663
    • /
    • 2019
  • This case report describes the management of a 30-year-old woman with hopeless mandibular first molars and right maxillary second premolar. The treatment plan included mandibular second and third molar protraction after extraction of mandibular first molars. Mini-implants were placed between roots of first and second premolar. Sliding mechanics with lever arm was used to prevent inclination of molars. A good functional occlusion was achieved in 38 months without clinically significant side effects. Most of the extraction space of mandibular first molar was closed by protraction of second and third molars. The skeletal Class II pattern was improved by counterclockwise rotation of mandible through reduction of wedge effect. Mandibular molar protraction with orthodontic mini-implants in adequate cases would be a great alternative to prosthetic implant and reduce the financial and surgical burden of patients.

  • PDF

Mandibular Mini-Implants Supported Overdentures: A Case Report (미니 임플란트를 이용한 하악의 임플란트 지지 피개의치: 증례보고)

  • Park, Jin-Hong;Lee, Jeong-Yol;Shin, Sang-Wan
    • Implantology
    • /
    • v.19 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • Mini-dental implants for overdenture applications are increasingly popular due to their ease in placement with simplified, less traumatic surgical protocols in limited-width alveolar ridges. However, the clinical decisions including implant number, position, and loading protocol must be based on a thorough evaluation and evidence-based diagnosis. Herein, we reported a case treated with the current method of mandibular mini-implant supported overdenture.

Identification of bacteria from the peri-implant sulcus of orthodontic mini-implants using 16S rDNA clone library (16S rDNA 클론 library 제작 및 핵산염기서열 결정을 통한 교정용 미니임플랜트 주위 열구의 세균 동정)

  • Lim, Sung-Hoon;Kim, Kwang-Won;Yoo, So-Young;Kook, Joong-Ki;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.251-262
    • /
    • 2006
  • Objective: The purpose of this study was to compare the bacterial flora at the peri-implant sulcus of the orthodontic mini-implant placed in the alveolar mucosa with the bacterial flora at the adjacent healthy gingival sulcus. Methods: Two plaque samples from 7 patients were collected by inserting paper points into the sulcus between the mini-implant and ligature wire connected to the mini-implant head and inflamed alveolar mucosa, and from the gingival sulcus of a healthy tooth adjacent to the mini-implant. Results: Using 16S rDNA clone library, the 24 kinds of bacteria including Haemophilus aphrophilus, Sphingomonas species, Capnocytophaga species, Prevotella melaninogenica, Lachnospiraceae species, Porphyromonas species, Neisseria flava were identified only from the sulcus around the mini-implant. These bacteria constituted only 9.2% of total clones, and the bacteria identified from both the sulcus around mini-implants and the gingival sulcus constituted 80.4% of total clones. Of these bacteria, clones of Prevotella species, Atopobium rimae, Veillonella species, Streptococcus intermedius/constellatus, Streptococcus salivarius were more frequently isolated from the peri-implant sulcus. Conclusion: This study suggests that a broad epidemiological study is needed to find causative bacteria which induce inflammation from the peri-implant sulcus.

Treatment plan for missing mandibular 4 incisors (하악 4전치 상실시 치료 계획)

  • Hahn, Kwang Jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • Treatment of missing mandibular 4 incisors is often thought to be easier then other place during surgical and prothetic procedure. But clinicians encounter unexpected difficulties such as restricted implant site due to mesio-distal width of mandibular incisors, limited space as a result of crowing and mesial drift, esthetic problem after severe alveolar bone resorption, and difficulties of provisionalization Through cases, possible treatment options for missing mandibular incisors would be discussed. Treatment options for missing mandibular 4 incisors Place narrow type implant or one body mini implant on exact tooth position when there is no bone resorption Regular size implant on interseptal bone area when there is severe bone resorption Consider using resin bonded bridge(resin retained bridge/resin bonded fixed partial denture) as a tentative prosthesis when patient resists extracting remaining incisors with poor prognosis.

Buccal cortical bone thickness on CBCT for mini-implant (치과용 콘빔CT영상에서 미니임플란트를 위한 협측피질골 두께)

  • Goo, Jong-Gook;Lim, Sung-Hoon;Lee, Byoung-Jin;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.40 no.4
    • /
    • pp.179-185
    • /
    • 2010
  • Purpose : Cortical bone thickness is one of the important factor in mini-implant stability. This study was performed to investigate the buccal cortical bone thickness at every interdental area as an aid in planning mini-implant placement. Materials and Methods : Two-dimensional slices at every interdental area were selected from the cone-beam computed tomography scans of 20 patients in third decade. Buccal cortical bone thickness was measured at 2, 4, and 6 mm levels from the alveolar crest in the interdental bones of posterior regions of both jaws using the plot profile function of $Ez3D2009^{TM}$ (Vatech, Yongin, Korea). The results were analyzed using by Mann-Whitney test. Results : Buccal cortical bone was thicker in the mandible than in the maxilla. The thickness increased with further distance from the alveolar crest in the maxilla and with coming from the posterior to anterior region in the mandible (p<0.01). The maximum CT value showed an increasing tendency with further distance from the alveolar crest and with coming from posterior to anterior region in both jaws. Conclusion : Interdental buccal cortical bone thickness varied in both jaws, however our study showed a distinct tendency. We expect that these results could be helpful for the selection and preparation of mini-implant sites.

COMPARISON OF RESONANCE FREQUENCY ANALYSIS BETWEEN VARIOUS SURFACE PROPERTIES (임프란트 표면 처리에 따른 공명주파수 변화에 대한 연구)

  • Bae, Sang-Bum;Lee, Seong-Hyun;Song, Seung-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • Purpose: The aim of this study is to compare the stability between Mg-incorporated implant, TiUnite and Machined implant. Materials and Methods: Premolars of 3 Mini pigs (24 months) were extracted. After 2 months later, total 27 fixtures of implants (9 of each design : Machined/ TiUnite/ Mg-incorporated) were inserted into the mandible of 3 mini-pig. Implant stability was estimated by RFA in installation to 2, 4 & 6 weeks. Statistical analysis of RFA values was performed with time and between groups using repeated measure ANOVA and turkey's multiple comparison test. Results: In analyzing the mean value for the observation periods, three types of implants yielded a slight decrease in RFA mean value after 2 week, followed by increase at 4-6 weeks. Mg incorporated oxidized implants demonstrated significantly higher RFA mean values at 6 weeks comparing other groups. The difference of RFA value with time and between groups was statistically significant. Conclusion: We concluded that Mg implants may reduce failure rates of clinical implants In the early period of bone healing and Mg implants may shorten the bone healing time from surgery to functional loading.

The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method (상악 전치부 후방 견인 시 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Chung, Ae-Jin;Kim, Un-Su;Lee, Soo-Haeng;Kang, Seong-Soo;Choi, Hee-In;Jo, Jin-Hyung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.98-113
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the displacement pattern and the stress distribution shown on a finite element model 3-D visualization of a dry human skull using CT during the retraction of upper anterior teeth. Methods: Experimental groups were differentiated into 8 groups according to corticotomy, anchorage (buccal: mini implant between the maxillary second premolar and first molar and second premolar reinforced with a mini Implant, palatal: mini implant between the maxillary first molar and second molar and mini implant on the midpalatal suture) and force application point (use of a power arm or not). Results: In cases where anterior teeth were retracted by a conventional T-loop arch wire, the anterior teeth tipped more postero-inferiorly and the posterior teeth moved slightly in a mesial direction. In cases where anterior teeth were retracted with corticotomy, the stress at the anterior bone segment was distributed widely and showed a smaller degree of tipping movement of the anterior teeth, but with a greater amount of displacement. In cases where anterior teeth were retracted from the buccal side with force applied to the mini implant placed between the maxillary second premolar and the first molar to the canine power arm, it showed that a smaller degree of tipping movement was generated than when force was applied to the second premolar reinforced with a mini implant from the canine bracket. In cases where anterior teeth were retracted from the palatal side with force applied to the mini implant on the midpalatal suture, it resulted in a greater degree of tipping movement than when force was applied to the mini implant between the maxillary first and second molars. Conclusion: The results of this study verifies the effects of corticotomies and the effects of controlling orthodontic force vectors during tooth movement.

Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface (교정용 미니임플랜트의 직경 및 식립각도에 따른 응력 분포에 관한 3차원 유한요소 분석)

  • Byoun, Na-Young;Nam, Eun-Hye;Kim, Il-Kyu;Yoon, Young-Ah
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.178-187
    • /
    • 2006
  • The present study was performed to evaluate the stress distribution on the diameter of the mini-implant and insertion angle to the bone surface. To perform three dimensional finite element analysis, a hexadron of $15{\times}15{\times}20mm^3$ was used, with a 1.0 mm width of cortical bone. Mini-implants of 8 mm length and 1.2 mm, 1.6 mm, and 2.0 mm in diameter were inserted at $90^{\circ},\;75^{\circ},\;60^{\circ},\;45^{\circ},\;and\;30^{\circ}$ to the bone surface. Two hundred grams of horizontal force was applied to the center of the mini-implant head and stress distribution and its magnitude were analyzed by ANSYS, a three dimensional finite element analysis program. The findings of this study showed that maximum von Mises stresses in the mini-implant and cortical and cancellous bone were decreased as the diameter increased from 1.2 mm to 2.0 mm with no relation to the insertion angle. Analysis of the stress distribution in the cortical and cancellous bone showed that the stress was absorbed mostly in the cortical bone, and little was transmitted to the cancellous bone. The contact area increased according to the increased diameter and decreased insertion angle to the bone surface, but maximum von Mises stress in cortical bone was more significantly related with the contact point of the mini-implant into the cortical bone surface than the insertion angle to the bone surface. The above results suggest that the maintenance of the mini-implant is more closely related with the diameter and contact point of the mini-implant into the cortical bone surface rather than the insertion angle.