• Title/Summary/Keyword: Mini Cyclone

Search Result 4, Processing Time 0.018 seconds

Variation of Collection Efficiency with Turbulence Model in a Mini Cyclone for Collecting Automobile Brake Fine Dust (자동차 브레이크 미세먼지 포집을 위한 미니 사이클론의 난류모델에 따른 포집효율 변화)

  • Han, Dong-Yeon;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.47-52
    • /
    • 2021
  • Fine dust generated from vehicle brakes accounts for a significant amount of fine dust from non-exhaust system. Since such brake fine dust contains a large number of heavy metal components that are fatal to the human body, a device capable of collecting them needs to be developed. A mini cyclone, one of the devices that can effectively collect fine dust, has the advantage of relatively simple shape and high collection efficiency. Therefore, in this study, the collection efficiency of the mini-cyclone was numerically analyzed using CFD in order to find out whether such a mini-cyclone is suitable for collecting brake fine dust. As a result, the cut-off diameter was predicted to be about 1.5㎛, which means that the particle trapping load of the filter can be drastically reduced. Therefore, there is a possibility that the mini-cyclone can be used to collect fine dust from disc brakes.

Analysis and Evaluation of Separation Efficiency on Mass Flow of Mini Hydro Cyclone Separator Manufactured by 3D Printing (3D 프린팅을 적용한 미니 하이드로 싸이클론 분리기의 질량유량을 통한 분리효율 해석 및 평가)

  • Yi, Hyung-wook;Lee, Yeo-ul;Lee, Myung-won;Kwon, Je-young;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a mini hydro cyclone was designed and manufactured to achieve an inlet flow rate of 2 L/min in the experiment, which was conducted using alumina powder with a specific gravity of 3.97. This hydro cyclone was studied for using in steam and water analysis system (SWAS) of thermal power plant and was manufactured by 3D printing. Numerical analysis was performed with Solidworks Flow Simulation, utilizing the reynolds stress method (RSM) of fluid multiphase flow analysis models. Experimental and numerical analysis were performed under the three conditions of inlet velocity 2.0, 4.0, and 6.0 m/s. The separation efficiency was over 80% at all inlet velocity conditions. At the inlet velocity 4m/s, the separation efficiency was the best, and it was confirmed that the efficiency was more than 90%.

Evaluation of Performance Characteristics by Dual Arrangement of Mini-hydrocyclone Separators (미니 하이드로 사이클론 분리기의 이중배열을 통한 성능특성 평가)

  • Kwon, Je-Young;Kim, Seung-Kyung;Hong, Jun-Gyu;Yi, Hyung-Wook;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.17-23
    • /
    • 2021
  • A cyclone is a dust-separating mechanism that works on the principle of centrifugal force. The performance of a cyclone is evaluated using pressure loss and collection efficiency. A multi-cyclone arrangement is used to improve the collection efficiency within a limited area. In this study, experiments and numerical analyses were conducted on a dual arrangement of mini-hydrocyclone separators, which was fabricated using 3D printing. The experiment was performed at an inlet flow rate of 0.7 m/s, and alumina powder with a particle size of 0.5, 15, and 50 ㎛. ANSYS FLUENT, was used for the numerical analysis. The reliability of the numerical analysis was verified through a comparison with the experimental results. The errors in the experiment and numerical analysis were confirmed to be 2% at the outlet flow rate.

Comparative Evaluation of Gravimetric Measurement Samplers for Fine Particles by Sampling Flow Rates and Meteorological Conditions (샘플유량과 기상조건에 따른 미세먼지 중량 측정용 기구간의 농도 비교)

  • Yang Won Ho;Kim Dae Won;Kim Jin Kuk;Yoon Chung Sik;Heo Yong;Lee Bu Yong
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.91-96
    • /
    • 2005
  • Several samplers using gravimetric methods such as high-volume air sampler, MiniVol portable sampler, personal environmental monitor(PEM) and cyclone were applied to determine the concentrations of fine particles in atmospheric condition. Comparative evaluation between high-volume air sampler and Minivol portable sampler for $PM_{10}$, and between Minivol portable sampler and PEM was undertaken from June, 2003 to January 2004. Simultaneously, meteorological conditions such as wind speed, wind direction, relative humidity and temperature was measured to check the factors affecting the concentrations of fine particles. In addition, particle concen­trations by cyclone with an aerodynamic diameter of $4{\mu}m$ were measured. Correlation coefficient between high­volume air sampler and portable air sampler for $PM_{10}$ was 0.79 (p<0.001). However, the mean concentration for $PM_{10}$ by high-volume air sampler was significantly higher than that by Minivol portable sampler (p=0.018). Correlation coefficient between Minivol portable sampler and PEM for $PM_{2.5}$ as 0.74 (p<0.001), and the measured mean concentrations for $PM_{2.5}$ did not show significant difference. Difference of the measured con­centrations of fine particle might be explained by wind speed and humidity among meteorological conditions. Particle concentration differences by measurement samplers were proportional to the wind speed, but inversely proportional to the relative humidity, though it was not a significant correlation.