• Title/Summary/Keyword: Mines

Search Result 857, Processing Time 0.02 seconds

Excavation Mechanism of Roadheader and Statistical Analysis of its Key Design Parameters Based on Database (로드헤더의 굴착 원리와 데이터베이스를 활용한 로드헤더 핵심 설계 항목의 통계분석)

  • Park, Young-Taek;Choi, Soon-Wook;Park, Jae-Hyun;Lee, Chul-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.428-441
    • /
    • 2013
  • Nowadays, a roadheader as a mechanical excavator is in high demand, especially for mines under various conditions and tunnels where TBMs are inapplicable. However, the records of roadheaders in Korea are seldom reported. Moreover, the number of countries with their intrinsic design and manufacturing technologies of roadheaders is very limited. Therefore, this study aimed to analyse the excavation principles of roadheader as well as its key design parameters for its optimized selection and design. In addition, the database with 143 world-widely collected roadheader design data was built, and a few statistical correlations were derived from it. A schematic procedure for roadheader design based on the database was also proposed.

Introduction of 3D Printing Technique applied for producing Physical Models of Underground Mine Openings (지하광산갱도의 물리모형 구현을 위한 3D프린팅 기술 적용사례)

  • Yoon, Dong-Ho;Fereshtenejad, Sayedalireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Physical models of underground mines are very useful to the design of mine openings and the management of work progress of mining companies as well as to consulting. Even though 3D image realization techniques for mine openings have already been developed by various companies the physical models are still widely used because they can provide better understanding without sophisticated equipments for the most of people. Conventional materials for the physical models are paper and acryl which demand a lot of time and labor to make the model even with low precision and high cost. In this research, 3D printing technique is adopted to develop the physical model with relatively short time, low cost, and proper degree of precision. Finally the computer software "UMine2STL" was developed and verified by comparing the printed product with its design.

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.

Blood Lead Level in Populations Resident in Some Abandoned Mine Area (충청북도 일부 폐광산 지역 주민의 만성 납 노출 정도 평가)

  • Song, Sun-Ho;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon;Hong, Jang-Soo
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.527-532
    • /
    • 2010
  • Exposure to lead, particularly at chronic low-dose levels, is still a major public health concern. The present study is aimed to evaluate the blood lead levels in populations resident in some abandoned mine areas of Chungbuk, Korea. Eight hundreds and sixty-six subjects who reside in abandoned mine area located in Chungbuk, Korea, were enrolled this study. We evaluated the blood lead level according to the age, gender, and working history in mines. For statistical analysis, SPSS ver 12.0 was used. The geometric mean blood lead levels was $2.93\;{\mu}g/{\ell}$ and nobody showed levels over the guidelines of WHO. Ex-smokers and current-smokers showed significantly higher blood lead levels compared to that of non-smokers. The blood lead levels in individuals with a history of working in a mine was higher than those in individuals without such histories. The populations resident in some Chungbuk abadoned mine area showed low levels of lead in blood. This suggest that lead poisoning might not be induced by abandoned mine in Chungbuk, Korea.

A numerical study on evaluation of unsupported pillar strength in the room and pillar method (주방식 공법에서 무지보 암주의 강도 산정에 관한 수치해석적 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • This study aims to evaluate the mechanical behaviors of unsupported rock pillars in a room-and-pillar underground structure by a series of numerical analyses. In addition, rock pillar strengths estimated by a few empirical equations proposed for underground mines are compared with those from numerical analyses. Based on the results from the numerical analysis, the ratio of pillar strength to rock mass strength increases as the ratio of the width of a pillar to its height becomes bigger. It means that higher ratio of pillar width to its height is much more favorable for stabilizing a room-and-pillar underground structure. Especially, unsupported pillar strengths estimated from numerical analyses are higher than rock mass strength when the ratio of pillar width to height is approximately over 1.5. It is also found that the choice of an empirical equation appropriate for a given geometric condition of a pillar is important for its feasible application to the stability analysis of a pillar in the room-and-pillar method.

A Numerical Analysis on the Collapse and Backfill Mechanism of the Abandoned Mine Cavity (폐광의 점진적 파괴 및 뒷채움 효과에 대한 해석적 연구)

  • Lee, Jun-Suk;Bang, C.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.62-71
    • /
    • 2000
  • The abandoned mines causing settlement of the surface above and collapse of the cavities are the major influencing factor on the stability of the nearby underground structures. To prevent the harmful effect, the backfill methods are commonly applied to the cavities although the design criteria and the analysis method are not properly addressed in some cases. An approximate analytical method together with the numerical technique is considered in this study to simulate the gradual deterioration of the rock masses around the cavities and, therefore, the influential zone to the underground structures passing through the cavities. Also considered in this study is the backfill effect on the stability of the rock masses around the cavities. Specifically, the incomplete backfill effect is compared with that of the idealized backfill method by adopting elasto-plastic analysis involving a strain softening material law.

  • PDF

Membrane Application of Poly(lactic acid) (Poly(lactic acid)의 분리막에의 응용)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Dorgan J.R.
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.85-105
    • /
    • 2006
  • Poly(lactic acid) is a linear aliphatic thermoplastic polyester, produced by the ring-opening polymerization of lactides and the lactic acid monomers, which are obtained from the fermentation of sugar feed stocks, corn, etc. PLA has high mechanical, thermal plasticity, fabric-ability, and biocompatibility, So PLA is a promising polymer far various end-use applications. In recent time, the intercalation of polymers from either solution or the melt in the silicate galleries of clay is the best technique to prepare nanocompoiste material which often exhibit remarkable improvement of mechanical, thermal, optical and physicochemical properties when compared with the pure polymer or conventional composites. Layered silicate is naturally abundant, economic, and more importantly benign to the environment.

The Estimation of the Economic Effect on a Full Cycle Technology Development of Metal Mineral Resources (금속광물자원의 전주기 기술개발에 따른 경제적 효과 추정)

  • Kim, Shin-Jong;Kim, Dok-Han;Park, Jung-Gu
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.345-375
    • /
    • 2009
  • In this paper we examined the impact of mineral resources industry on the national economy and necessity of a mineral resources cycle technology development. For this purpose, the case study on Gagok polymetallic (zinc-lead-copper) mine, which is being re-developed, was carried out to study an anticipated effects of application of the full cycle technology. As a consequences of the study, if we apply the technology to a polymetallic (zinc-lead-cooper) mine, we can expect 55 billion won worth of import-substitution effect. Moreover, if applied to 10 similar mines, we can expect the 10.4% of import-substitution effect of the total imports annually. Also, national competitiveness in value chain of mineral industry will be promoted through the technological advancement in upper stream and the full cycle technology will render a service to the mineral industry to be the country's new growth engine.

  • PDF

Sequential Extraction of Heavy Metals in Soils and A Case Study (토양중의 중금속 연속추출방법과 사례연구)

  • Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.469-477
    • /
    • 1994
  • Many researchers have investigated most representative sequential extraction method using various reagents for determining the chemical forms of metals in soils and sediments. In this paper, a newly modified method for sequential extraction scheme based on Tessier's method by Environmental Geochemistry Research, Centre for Environmental Technology, Imperial College, was introduced and examined. In comparison with Tessier's method, originally designed for sediment analysis by Atomic Absorption Spectrophotometry (AAS), the sequential extraction scheme has been developed for the multi-element analysis by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The partitioning of particulate trace elements was classified into five fractions: (i) exchangeable, (ii) bound to carbonates or specially adsorbed, (iii) bound to Fe and Mn oxides, (iv) bound to organic matter and sulphides and (v) residuals. The experimental results of the pilot study for in-house reference material (HRM2) and certified international standard reference material (SRM2711) using the modified method showed not only reasonable precision and accuracy but also acceptable overall recovery rates. In addition, mine dump soils sampled in the Dalsung Cu-W mine, Korea were prepared and sequentially extracted using the method. Most of Cu was bound to organic matter/sulphides and residual fractions. The dominant fraction of soil Pb and Zn in the study area was found in the residuals. The fraction of Cd showed a wide variation between samples and could be found bound to the carbonates or specially adsorbed, oxides, organic fraction and residuals. The recovery rates of Cd, however, were poor due to relatively low Cd concentrations in soils. The heavy metals in these mine dumps appear to be in the more inert forms and should not be readily bioavailable. The soils, however, had very low pH values (average 4.1) and had sandy textures; consequently, rapid infiltration of rainfall may increase leaching of Zn and Cd which were found to be around 5 to 10% of the exchangeable fraction. As a result of the investigation of this study, it has been strongly recommended that these mine waste materials should still be considered a significant contaminant source and will need environmental remediation to prevent pollutants from being released into the environment.

  • PDF

Treatment of Acid Mine Drainage Using Immobilized Beads Carrying Sulfate Reducing Bacteria (황산염환원균 고정화 담체를 이용한 산성광산배수 처리)

  • Kim, Gyoung-Man;Hur, Won;Baek, Hwan-Jo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • The application of constructed subsurface-flow wetlands for treatment of wastewater from abandoned mines is being increased. Crushed limestone, oak chips, and mushroom composites are often employed in a bulk form, as the substrates in the bed media. Efficiency of the subsurface-flow treatment system drops with time as the hydraulic conductivity of the wetland soil decreases significantly, presumably due to chemical reactions with the wastewater. The purpose of this study is to investigate the applicability of immobilized beads carrying sulfate reducing bacteria for acid mine drainage treatment system. The ingredients of immobilized beads are organic materials such as mushroom composite and oak chips, limestone powder for a pH buffer, mixed with a modified Coleville Synthetic Brine. It was found that immobilized beads are more efficient than the bulk form for pH recovery, sulfate and heavy metal removal.