• Title/Summary/Keyword: Minerals Proteinate

Search Result 2, Processing Time 0.017 seconds

Effects of Rumen Undegradable Protein and Minerals Proteinate on Early Lactation Performance and Ovarian Functions of Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.806-811
    • /
    • 2002
  • A 90 d study was designed to investigate the effects of rumen undegradable protein (RUP) and a mixture of Cu, Zn and Mn proteinate (CZMP) on milk yield and composition and ovarian functions during rainy months. Twenty four Holstein${\times}$ indigenous cows in their 2nd and 3rd lactation were randomly allocated to total mixed rations (TMR) containing soy bean meal (SBM) as a source of rumen degradable protein (RDP), SBM plus CZMP, and formalin treated SBM (FSBM) as a source of RUP. Maximum and minimum temperature humidity index during the experimental period were 83.6-84.7 and 75.4-76.1. There were no differences (p>0.05) in intakes of dry matter, crude protein and net energy and in contents of butterfat, lactose and minerals. Cows on TMR containing FSBM not only lost less weight (-278, -467 and -433 g/d) with more intake of RUP (0.92, 0.58 and 0.59 kg/d) but also produced more milk (19.27, 18.23 and 18.13 kg/d) and 4% fat corrected milk (18.57, 17.57 and 17.51 kg/d) with more protein (3.06, 2.81 and 2.80%), solids-not-fat (8.69, 8.38 and 8.38%) and less milk urea N (9.3, 15.4 and 15.0 mg/dl) compared with those on TMR containing SBM and SBM+CZMP, respectively (p<0.01). However, cows on TMR containing SBM and SBM+CZMP did not differ in these respects (p>0.05). Whereas incidence of cystic ovaries at 20 and 90 d pospartum was less (p<0.01) in cows on TMR containing SBM+CZMP (37.3 and 12.5%) than those on TMR containing SBM (62.5 and 25%), it was nil for cows on TMR containing FSBM. Cows in all three group differed (p<0.01) from each other for the recurrence of first observed estrus with those on TMR containing FSBM having least days (22, 36 and 47 d) compared with their counterpart on TMR containing SBM+CZMP and SBM, repectively. The results suggest that RUP is one of the limiting factors affecting milk yield and its composition and ovarian functions during early lactation of dairy cows in the tropics.

Different Sources and Levels of Copper Supplementation on Performance and Nutrient Utilization of Castrated Black Bengal (Capra hircus) Kids Diet

  • Mondal, M.K.;Biswas, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1067-1075
    • /
    • 2007
  • Twenty eight 3-4 month old castrated Black Bengal kids (Capra hircus) were used to determine the effects of source and level of dietary copper (Cu) concentration on their performance and nutrient utilization. Cu was supplemented (0, 10, 20 and 30 mg/kg diet DM) as copper sulfate ($CuSO_4$, $5H_2O$) or copper proteinate (Cu-P). Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each) and mineral and vitamin mixture (0.5% each) supplements at 3.5% of body weight to meet NRC (1981) requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. $CuSO_4$ or Cu-P was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well ventilated shed with facilities for individual feeding in aluminum plated metabolic cages. Blood samples were collected from the jugular vein on d 0, 30, 60 and 90 to determine hemoglobin (Hb), packed cell volume (PCV), total erythrocyte count (TEC), total leukocyte count (TLC) and serum enzymes (alkaline phosphatase, alanine transferase and aspertate transferase). A metabolism trial of 6 days duration was conducted after 90 days of experimental feeding. Statistical analysis revealed that source and level of Cu supplementation improved live weight gain (p<0.04) and average daily gain (p<0.01). No significant contribution of source and level of Cu to alter serum serum enzymes was evident. Goats fed Cu-P tended to have higher Hb, PCV and TEC than with $CuSO_4$ supplementation. Cu-P increased digestibility of ether extract (EE, p<0.02) and crude fiber (p<0.05) and showed an increasing trend (p<0.09) for digested crude protein (CP) and crude fiber (CF). Supplemental dose of Cu linearly improved (p<0.02) digestibilities of dry matter (DM), organic matter (OM), EE and nitrogen free extract (NFE). Though the absorption of nitrogen (N) was not affected (p>0.10) by both source and dose of Cu, N retention was affected (p<0.04) and there was a significant $Source{\times}Dose$ interaction (p<0.05). Final body weight (BW) was not influenced (p>0.10) by the source of Cu but increasing dose of Cu increased (p<0.04) the BW of kids. TDN intake (g/kg $W^{0.75}$) was higher (p<0.05) with the increased dose of Cu and there was a significant $Source{\times}Dose$ interaction. It was concluded that supplementation of Cu from different sources and varying dose level in a concentrate based diet may improve performance, nutrient utilization and plane of nutrition in castrated Black Bengal kids. The effects on performance and nutrient utilization are more pronounced with Cu-P than $CuSO_4$ supplementation. Higher dose of Cu showed better result than lower dose.