• Title/Summary/Keyword: Mineral potential

Search Result 655, Processing Time 0.025 seconds

A novel method for predicting the swelling potential of clay-bearing rocks

  • Moosavi, Mahdi;Ghadernejad, Saleh
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.615-626
    • /
    • 2021
  • The main objective of this study is to present a fast and reliable approach to predict the swelling potential of clay-bearing rocks. Investigations showed that there is a good correlation between the swelling potential of a rock and its desire to absorb water due to its clay content which could be measured using the "Contact Angle" test as one of the most common ways to determine the wettability. In this test, the angle between a water drop and the flat rock surface on which it rests is measured. The present method is very fast and returns repeatable results and requires minimal sample preparation. Only having a saw-cut surface of a sample with any shape is all one needs to perform this test. The logic behind this approach is that the swelling potential of a rock is a function of its mineral content and molecular structure, which are not only distributed in the bulk of the sample but also reflected on its surface. Therefore, to evaluate swelling behavior, it is not necessary to wait for a sample to get wet all the way to its "internal structure" (which, due to the low permeability of clay-bearing rocks, is very slow and time-consuming). Instead, one can have a good sense of swelling potential by studying its surface. Parametric studies on the effect of moisture content, porosity, and surface roughness on the contact angle measurements showed that using a saw-cut oven-dried sample is a convenient way to evaluate the swelling potential by this method.

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Upward Continuation of Potential Field on Spherical Patch Area (구면부분지역에서의 퍼텐셜마당의 상향연속)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.245-248
    • /
    • 2012
  • Two dimensional Fourier transform can be used for the upward continuation of gravity or magnetic field data acquired at given altitude over a rectangular area. Earth's curvature is often neglected in most potential field continuations, however, it should be considered over several hundred kilometer field area. In this study, we developed a new method retaining terms of Earth's curvature to better perform the continuation of potential field on spherical patch area.

Influence of Heat Treatment on the Physicochemical Property and Mineral Composition of Various Processed Salts

  • Han, Sung-Hee;Lee, Seog-Won;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1010-1015
    • /
    • 2008
  • The effects of heat treatment on the physicochemical properties and mineral composition of sun-dried salt were investigated. The salts parched at high temperature were appeared the higher alkalinity and the lower oxidation-reduction potential (ORP) than the samples without heat treatment. The commercial salts (bamboo salt and yellow loess salt) and the sun-dried salt parched at high temperature had relatively higher sodium ion content (418-450 ppm) compared to that (418.0 ppm) of refined salt. The increase of calcium ion occurred in the salts parched at high temperature compared to the sun-dried salt without heat treatment, but the magnesium ion was vice versa. The commercial salt, yellow loess salt had highest turbidity (0.973) whereas sun-dried salt showed lowest level (0.097) among the tested samples. Turbidity of heat treatment samples decreased as solubility increased. The maximum concentration of dialyzed salt was reached after 4 hr regardless of various processed salts, but those had no difference significantly among the tested samples. The X-ray diffraction patterns of the parched sun-dried salts showed different peak intensity with common salts, and they were similar to the patterns of oxide salts, especially MgO. The maximum value (2.56%) of MgO appeared in the sun-dried salt parched at $1,400^{\circ}C$.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Field Study of Zapla Iron Ore Deposit in Argentina (아르헨티나 자플라 철광상 현지 조사 연구)

  • Pak, Sang-Joon;Lee, Han-Yeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • Zapla iron ore bodies in Jujuy state, northern Argentina are located within Paleozoic Silurian marine sedimentary rocks and can be categorized into ironstone deposit. Iron ores contain oolitic hematite as main iron mineral as well as siderite and chamosite. Hematite replaced biotite and/or muscovite along their cleavage or grain boundary, which indicates hematite is precipitated by chemical reaction. Silurian basins in northern Argentina has high potential resources for ironstone deposit but economic aspects of ore body can be controlled by magnitude of lateral vertical extensions and local grade variation of iron beds.

Problems with Bone Health and the Influencing Factors of Bone Mineral Density in Women across the Life Cycle (여성의 생애주기별 골건강 문제 및 골밀도 영향요인: 2010년 국민건강영양조사 자료 이용)

  • Chun, Nami;Chae, Hyunj
    • Women's Health Nursing
    • /
    • v.21 no.1
    • /
    • pp.43-54
    • /
    • 2015
  • Purpose: This study was conducted to identify the problem of bone health and potential influencing factors of bone mineral density (BMD) for women across the life cycle of menopause. Methods: Complex sampling design data analysis was performed on the fifth Korea National Health and Nutrition Examination Survey 2010 in order to identify the problems with bone health, BMD and its influencing factors in 3,499 women who answered the menopausal status. Women's life cycle was categorized by premenopausal, postmenopausal, and elderly. Results: 35.1% of premenopausal women, 73.3% of postmenopausal women, and 96.0% of elderly women had problems with bone health that were related to low BMD. Influencing factors of BMD were residential area, alcohol drinking, and body mass index (BMI) for premenopausal women; age, residential area, education, marital status, income, and BMI for postmenopausal women; and age, education, and BMI for elderly women. Conclusion: Problems with bone health required to be considered as a major health problem in all women regardless their life cycle. Interventions to maximize BMD need to be developed by considering its influencingfactors across the women's life cycle.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF

Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment III: organics (사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 III: 유기화학물질을 중심으로)

  • Jeong, Seulki;Moon, Hee Sun;Shin, Doyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study presents a technical perspective to the fate characteristics of phenol and m-cresol, which represent some of the most common organic chemicals found in chemical spill accidents, and likely to persist in soil and groundwater due to their highly stable physicochemical properties. Some cases of domestic and foreign chemical accidents linked to phenol and m-cresol contamination were compiled. Due to their low organic carbon-water partitioning coefficient (Koc), phenol and m-cresol tend to migrate into groundwater and remained as dissolved phase. On the other hands, phenol and m-cresol can be readily decomposed by microbes in soil and groundwater under appropriate conditions. Therefore, the fate characteristics of these chemicals are highly contingent on environmental conditions. Thus, if a great quantity of leakage is occurred by chemical accidents, the up-to-date and correct information about fate characteristics taking into account both the chemical and environmental conditions is greatly needed to minimized the potential hazards from these chemicals.

Development of a New Lunar Regolith Simulant using an Automated Program Framework

  • GyeongRok Kwon;Kyeong Ja Kim;Eungseok Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • Nowadays, the trend in lunar exploration missions is shifting from prospecting lunar surface to utilizing in-situ resources and establishing sustainable bridgehead. In the past, experiments were mainly focused on rover maneuvers and equipment operations. But the current shift in trend requires more complex experiments that includes preparations for resource extraction, space construction and even space agriculture. To achieve that, the experiment requires a sophisticated simulation of the lunar environment, but we are not yet prepared for this. Particularly, in the case of lunar regolith simulants, precise physical and chemical composition with a rapid development speed rate that allows different terrains to be simulated is required. However, existing lunar regolith simulants, designed for 20th-century exploration paradigms, are not sufficient to meet the requirements of modern space exploration. In order to prepare for the latest trends in space exploration, it is necessary to innovate the methodology for producing simulants. In this study, the basic framework for lunar regolith simulant development was established to realize this goal. The framework not only has a sample database and a database of potential simulation target compositions, but also has a built-in function to automatically calculate the optimal material mixing ratio through the particle swarm optimization algorithm to reproduce the target simulation, enabling fast and accurate simulant development. Using this framework, we anticipate a more agile response to the evolving needs toward simulants for space exploration.