• Title/Summary/Keyword: Mineral oil storage

Search Result 32, Processing Time 0.025 seconds

Effect of Activated Carbon and Fish Oil Addition on the Physico-Chemical Characteristics in Chicken Meat (활성탄과 어유의 첨가가 계육의 이화학적 특성에 미치는 영향)

  • 박창일;김영직;김덕진;안종호;김영길
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.206-211
    • /
    • 2002
  • This study was conducted to investigate the influence of dietary activated carbon(0.9%) and fish oil(0, 1, 2, 4%) addition on the feed efficiency, blood-cholesterol, proximate composition, pH and minerals in breast and thigh of chicken meat. Broilers were randomly assigned to one of the five dietary treatment: 1) Control (commercial feed) 2) T1(commercial feed supplemented with 0.9% activated carbon) 3) T2 (commercial feed with 0.9% activated carbon and 1% fish oil) 4) T3 (commercial feed with 0.9% activated carbon and 2% fish oil) 5) T4 (commercial feed with 0.9% activated carbon and 4% fish oil). They were fed with one of the experimental diets for five weeks and slaughtered. After that, the meat samples were vacuum packaged and stored over a period of 10 days at 4$\pm$1$\^{C}$. When broilers were fed with dietary activated carbon and fish oil, the feed efficiency of birds were higher compared with that of control diet. The blood cholesterol was tended to decrease in dietary activated carbon and fish oil(p<0.05). However, effects of diets containing graded levels of activated carbon and fish oil on proximate composition were not found(p>0.05). The pH of all treatments significantly increased during the storage periods. The activated carbon and fish oil diet increased the calcium, potassium and sodium content of chicken meat, and tended to increase total mineral contents.

A Study on the Geochemical Clogging for the Assessment of the Hydrological Safety of the Underground Oil Storage Carvern (지하유류비축기지 수리안정성 평가를 위한 광물학적 클로깅 가능성 연구)

  • Kim, Geon-Young;Bae, Dae-Seok;Choi, Byeong-Young;Oh, Se-Joong;Koh, Yong-Hwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.139-159
    • /
    • 2008
  • Geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. Most of water samples belonged to $Ca-HCO_3$ and $Ca-HCO_3-SO_4$ types. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which suggests the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Several water samples from the ground observation borehole also show the high saturation indices far the clay minerals, which can fill up the fractures, indicating the possibility of clogging by the clay minerals. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. According to the microbial analysis, the aerobic microbes and slime forming bacteria are dominant in most water samples and anaerobic microbes including sulfate reducing bacteria are very low or not detected. Although the slime forming bacteria which are known as a main microbial cause of the clogging is lower than $10^5\;CFUs/mL$ in all water samples, because the slime forming bacteria are dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

Relationship between Hydrochemical Variation of Groundwater and Gas Tigtness in the Underground Oil Storage Caverns (지하원유비축기지 공동주변 지하수의 수질화학적 변화와 기밀성과의 관계)

  • Jeong Chan Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.259-272
    • /
    • 2004
  • The purpose of this study is to investigate the effect of hydrochemical variation of groundwater on the gas tigtness in an unlined oil storage cavern. The groundwater chemistry is greatly influenced by the seawater mixing, the water curtain and the dissolution of grounting cements. The chemical composition of groundwater greatly varies ac-cording to both the location of monitoring wells and the sampling period. Most of groundwater shows alkaline pH and high electrical conductivity. The chemical types of groundwater show the dominant order as follows : Na-Cl type > Ca-Cl type > $Ca-HCO_3(CO_3)$ type. Thermodynamic equilibrium state between chemical composition of groundwater and major minerals indicates that carbonate minerals except clay minerals can be precipitated as a secondary mineral. It means that the secondary precipitates can not greatly exerts the clogging effect into fracture aperture in rock mass around oil storage cavern. The content of total organic carbon (TOC) shows a slightly increasing trend from initial stage to late stage. The $EpCO_2$ was computed so as to assess the gas contribution on the $CO_2$ in groundwater. The $EpCO_2$ of 0$\~$41.3 indicates that the contribution of oil gas on $CO_2$ pressure in groundwater system can be neglected.

A Study on CO2 injectivity with Nodal Analysis in Depleted Oil Reservoirs (고갈 유전 저류층에서 노달분석을 이용한 CO2 주입성 분석 연구)

  • Yu-Bin An;Jea-Yun Kim;Sun-il Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.66-75
    • /
    • 2024
  • This paper presents development of a CO2 injectivity analysis model using nodal analysis for the depleted oil reservoirs in Malaysia. Based on the final well report of an appraisal well, a basic model was established, and sensitivity analysis was performed on injection pressure, tubing size, reservoir pressure, reservoir permeability, and thickness. Utilizing the well testing report of A appraisal well, permeability of 10md was determined through production nodal analysis. Using the basic input data from the A appraisal well, an injection well model was set. Nodal analysis of the basic model, at the bottomhole pressure of 3000.74psia, estimated the CO2 injection rate to be 13.29MMscfd. As the results of sensitivity analysis, the injection pressure, reservoir thickness, and permeability tend to exhibit a roughly linear increase in injection rate when they were higher, while a decrease in reservoir pressure at injection also resulted in an approximate linear increase in injection rate. Analyzing the injection rate per inch of tubing size, the optimal tubing size of 2.548inch was determined. It is recommended that if the formation parting pressure is known, performing nodal analysis can predict the maximum reservoir pressure and injection pressure by comparing with bottomhole pressure.

Processing and Characteristics of Canned Seasoned Sea Mussel (조미 홍합 통조림의 제조 및 특성)

  • Park, Tae-Ho;Noe, Yu-Ni;Lee, In-Seok;Kwon, Soon-Jae;Yoon, Ho-Dong;Kong, Cheung-Sik;Nam, Dong-Bae;Oh, Kwang-Soo;Kim, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.6
    • /
    • pp.820-832
    • /
    • 2012
  • This study was investigated to obtain basic data which can be applied to processing of canned seasoned sea mussel. Shell was washed and steamed for 10 min before shucking. Sea mussel meat was seasoned with mixed seasoning sauce(soy sauce 23%, monosodiun glutamate 2%, sorbitol 2%, sesame oil 1%, vinegar 2%, starch syrup 15%, water 55%) for 30 min The seasoned sea mussel 60 g was vacuum packed in RR-90 can and fill with seasoning sauce 30 mL and grape seed oil 30 mL respectively, and then there was sterilized for various Fo values(Fo 8~12 min) in a steam system retort at $121^{\circ}C$. pH, VBN, amino-N, total amino acid, free amino acid, color value, texture profile, TBA value, mineral content, sensory evaluation and viable cells count of the canned seasoned sea mussels sterilized with various conditions(Fo 8~12 min) were measured. The same experimental items were also measured during storage. There was no remarkable difference between sterilized conditions and sensual characteristics. The results showed that the product of filled with grape seed oil sterilized at Fo 8 min was the most desirable.

Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole (고준위방사성폐기물 심층처분을 위한 심부 시추공을 활용한 암반의 지구과학적 조사 )

  • Dae-Sung, Cheon;Won-Kyong, Song;You Hong, Kihm;Seungbeom, Choi;Seong Kon, Lee;Sung Pil, Hyun;Heejun, Suk
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.435-450
    • /
    • 2022
  • In step-by-step site selection for geological disposal of high-level radioactive waste, parameters necessary for site selection will be acquired through deep drilling surveys from the basic survey stage. Unlike site investigations of rock mass structures such as tunnels and underground oil storage facilities, those related to the geological disposal of high-level radioactive waste are not only conducted in relatively deep depths, but also require a high level of quality control. In this report, based on the 750 m depth drilling experience conducted to acquire the parameters necessary for deep geological disposal, the methodology for deep drilling and the geology, geophysics, geochemistry, hydrogeology and rock mechanics obtained before, during, and after deep drilling are discussed. The procedures for multidisciplinary geoscientific investigations were briefly described. Regarding in-situ stress, one of the key evaluation parameter in the field of rock engineering, foreign and domestic cases related to the geological disposal of high-level radioactive waste were presented, and variations with depth were presented, and matters to be considered or agonized in acquiring evaluation parameters were mentioned.

Analysis of nutrients and antioxidants of sterilized and non-heat-pressed perilla oil (살균 및 비가열압착한 들깨오일의 영양성분 및 항산화 분석)

  • Kim, Yang-Hee;Chang, Ji-Hwe;Ha, Seo-Yeong;Park, Su-Jin;Park, Seon-Young;Jung, Tae-Hwan;Hwang, Hyo-Jeong;Shin, Kyung-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.264-271
    • /
    • 2022
  • In this study, the nutritional properties of sterilized and non-heat-pressed raw perilla oil (SRPO) were studied and its potential as a functional food was evaluated. The copper, cobalt, and calcium levels were high in sterilized and SRPO. The total polyphenol content and ABTS radical scavenging activity were the highest in SRPO, whereas nitrite scavenging activity was the highest in 45℃ cold pressed perilla oil (CPPO). The above results confirmed that sterilized and non-heat-pressed perilla oil had high mineral and total polyphenol contents, as well as ABTS radical scavenging activity and nitrite scavenging ability. The peroxide value of SRPO decreased as the storage period increased, and the acid value of low-temperature pressed perilla oil over 65℃ (LPPO) significantly increased. This work also provided an opportunity to develop a new method for manufacturing perilla oil, and it is hoped that these experiments will form a basis for the commercialization of perilla oil.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Monitoring of Fracture Occurrence During Carbon Dioxide Injection at the Meruap Oil Reservoir, Indonesia (인도네시아 머루압 유전에 이산화탄소 주입 시 균열대 생성 여부 모니터링)

  • Kim, Dowan;Byun, Joongmoo;Kim, Kiseog;Ahn, Taewoong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • $CO_2$-EOR (Carbon Dioxide-Enhanced Oil Recovery), one of the enhanced oil recovery methods, helps to not only enhance the production of oil, but also store carbon dioxide in underground. However, if micro fractures occur when during the injection of $CO_2$, it is difficult to make permanent storage of $CO_2$ in reservoir and can cause contamination of groundwater and soil. Therefore, in this study, we performed microseismic monitoring to investigate the occurrence of fractures during the $CO_2$ injection at the Meruap oil reservoir, Indonesia. To pick the first arrivals of microseismic events, Improved MER (Modified Energy Ratio) method was used. After picking the first arrivals, hodogram analysis was carried out by using the data recorded at three component geophones to calculate the back azimuth of events. Finally, locations of microseismic events were decided by using the results of first arrival picking and hodogram analysis. Estimated locations showed that all microseismic events were occurred at surface and any fracture did not occur around the reservoir. Moreover, by analyzing noise characteristic, we confirmed that almost of picked first arrivals were due to the repetitive mechanical noise.