• Title/Summary/Keyword: Mineral Water

Search Result 2,023, Processing Time 0.028 seconds

Current Situation and Problems in Applying Groundwater Flow Models to EIAs in Korea (지하수환경영향예측을 위한 지하수모델의 적용현황 및 문제점: 환경영향평가서와 먹는샘물환경영향조사서를 중심으로)

  • 김강주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.66-75
    • /
    • 1999
  • This work was initiated to investigate current situation and problems in applying groundwater-related models for various kinds of environmental impact assessment in Korea. and therefore. to enhance appropriate application in the future. This study was carried out with 544 and 16 documents of EIA (Environmental Impact Assessment. Law of Environmental Impact Assessment) and Mineral-Water EIA (“the environmental impact investigation for mineral water developments”; Law of Drinking Water Management). respectively. It was revealed that there were considerably many cases which may cause serious impacts on subsurface environments in EIA. However. none applied groundwater models. Generally, the influences on subsurface system were underestimated or even ignored in EIA. For Mineral-Water EIA. groundwater models wert applied. in general. But. numerous and serious problems were noted: limited number of calibration parameters and parameter types. setting boundary conditions without adequate bases. recharge rates several times higher than precipitation rates. numerically unstable results. etc. Such kinds of misusages seem to be caused by modelers larking in professional knowledges. To solve the problems revealed from this study. more systematic re-education programs are suggested.

  • PDF

Dispersion of Heavy Metals in the Geochemical Environment around the Geumwang Gold-Silver Mine (금왕 금·은광산 주변 지구화학적 환경에서의 중금속 원소들의 분산)

  • Park, Jong-Jin;Kim, Myeong-Kyun;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.407-416
    • /
    • 1997
  • Soil, tailings, stream sediment and surface water samples collected in the vicinity of the Geumwang Au-Ag mine were analyzed in order to investigate the pollution level of heavy metals and to determine the dispersion patterns. Although the maximum concentrations of soils collected at the flotation plant and tailings dam were 9,270 ppm As, 17 ppm Cd, 1,480 ppm Cu, 10,080 ppm Pb and 18,400 ppm Zn, dispersion of heavy metals were limited in the vicinity of the flotation plant and tailings dam. This may be due to high pH values (> 8.0) of the soils by flotation solution for mineral processing. The pH values of water samples near the flotation plant and tailings dam were over 8.0 and Cd, Cu and Zn concentrations were not detected. The waters in the vicinity of Geumwang mine generally belong to a $Ca^{2+}-SO_{4}{^{2-}}$ $(HCO_3{^-})$ type.

  • PDF

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology (새 도선 감는 방법을 적용한 전기장 이용 스케일 제거)

  • Son, Chang-Hyeon;Gu, Sang-Mo;Kim, Chang-Su;Kim, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

Evaluation of Some Aquatic Plants from Bangladesh through Mineral Composition, In Vitro Gas Production and In Situ Degradation Measurements

  • Khan, M.J.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.537-542
    • /
    • 2002
  • A study was conducted to evaluate the nutritive potential value of different aquatic plants: duckweed (Lemna trisulaca), duckweed (Lemna perpusila), azolla (Azolla pinnata) and water-hyacinth (Eichhornia crassipes) from Bangladesh. A wide variability in protein, mineral composition, gas production, microbial protein synthesis, rumen degradable nitrogen and in situ dry matter and crude protein degradability were recorded among species. Crude protein content ranged from 139 to 330 g/kg dry matter (DM). All species were relatively high in Ca, P, Na, content and very rich in K, Fe, Mg, Mn, Cu and Zn concentration. The rate of gas production was highest in azolla and lowest in water-hyacinth. A similar trend was observed with in situ DM degradability. Crude protein degradability was highest in duckweed. Microbial protein formation at 24 h incubation ranged from 38.6-47.2 mg and in vitro rumen degradable nitrogen between 31.5 and 48.4%. Based on the present findings it is concluded that aquatic species have potential as supplementary diet to livestock.

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by the Cooling Method after Heat Treatment (소성가공한 폐 벤토나이트 분말의 냉각방법에 따른 포졸란 반응성에 관한 실험적 연구)

  • Kim, Hyo-Yeul;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.139-146
    • /
    • 2002
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various environmental trouble as soil and water pollution est. This study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross (알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究))

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.3-7
    • /
    • 2007
  • Waste aluminum dross was processed to prepare alum with sulfuric acid, and poly aluminum chloride(PAC) with hydrochloric acid. Metallic aluminum remained in the waste dross was dissolved into the sulfuric acid solution, and the solution could be used as alum for water treatment chemicals after adjusting the required alumina concentration and pH of the solution. Also, it was dissolved into the hydrochloric acid solution and processed to make PAC solution. Compared with the conventional method for preparation of alum and PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste disposed to landfill.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Study on Major Mineral Distribution Characteristics in Groundwater in South Korea (국내 지하수의 주요 미네랄 분포 특성에 관한 연구)

  • Kim, Jeonghee;Ryoo, Rina;Lee, Jongsu;Song, Daesung;Lee, Young-Joo;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.566-573
    • /
    • 2016
  • In order to support effective usage of groundwater as an alternative water resource in future, we investigated distribution characteristics of minerals related with human health. While recent studies tended to focus on small scale, this study broadened research area up to nationwide scale to understand groundwater hydrology and regional, geological distributions of minerals in wide area; we investigated mineral distributions of national groundwater monitoring networks, developed GIS-based mineral maps, and reviewed correlation with geological features. As a result, calcium showed the highest concentration among 5 minerals (Ca, Mg, Na, K, Si) and potassium showed the lowest. Calcium concentration in limestone and sedimentary zone was the highest, and that in pore-volcanic-rock zone was the lowest. While calcium, magnesium and sodium showed differences in concentrations in intrusive-igneous-rock and sedimentary zone, potassium was not within geological features. When we studied regional differences, there were no tendency, but Jeju and Gangwon area showed differences in concentrations of calcium and silica.