• Title/Summary/Keyword: Mineral Water

Search Result 2,023, Processing Time 0.03 seconds

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment (한국 전통 적색광물안료 울릉도석간주의 기능성 연구)

  • Do, Jin-Young;Kim, Soo-Jin;Lee, Sang-Jin;Ahn, Byung-Chan;Yun, Seong-Chul;Kim, Kwang-Jong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The main compositions of "Seokganju", a Korean traditional red mineral pigment, are iron oxides. To investigate its mineralogical and functional properties, we had got its ore from Juto cave in Ulreoung island, which was a famous field of it in Korean documents. The ore occurs as a paleosol between the olivine basalt and amphibole trachyte in discontinuously. It is reddish brown and yellowish brown and consists mainly of clay minerals with minor debris. Its reddish and yellowish brown color are due to the hematite and ferrihydrate, respectively. These iron oxides are precipitated as ferrihydrate from the ferrous water in the paleosol and partly changed to hematite. The color reproduced in timber by using seokganju pigment with traditional tools and methods is similar to that in heritage building. The moistureproofing and fire resistance of Ulreungdo seokganju is far better than that of artificial seokganju. Moreover, the combustion tests show that the artificial seokganju promote the ignition and combustion of the timber. Ulreungdo seokganju is regarded as a pigment with fungicidal efficacy because growth of two wood decay fungi (cov. and typ.) are inhibited in solid medium with it.

Evaluation for Applicability as the Inorganic Binder with Rapid Setting Property for Construction Material of LFS Produced from Various Manufacturing Process (다양한 철강제조공정에서 부산되는 전기로 환원슬래그의 급경성 무기결합재로의 적용성 검토)

  • Kim, Jin-Man;Choi, Sun-Mi;Kim, Ji-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • The Ladle Furnace Slag, about 20% of the electric arc furnace slag, has high content of free CaO and free MgO, which generates the expansion collapse by hydration reaction. Although many researchers have been endeavoring to recycle the EAF reducing slag in construction fields, there is not found the effective recycling method up to now. However, the LFS(Ladle Furnace Slag) contains mineral composition of the system of calcium aluminate with high-reactivity. Therefore, it is possible to developed the quick setting property and the high strength at the early age by the rapid cooling. This study aimed to check the reactive minerals and predict the reactivity with water on the LFS discharged from different steel product plants. The test results show that many types of LFS has hydration reactivity and can use in construction field as a inorganic binder with the rapid setting property.

  • PDF

CO2 Evaluation of Reinforced Concrete Column Exposed to Chloride Attack Considering Repair Timing (보수시기를 고려한 염해에 노출된 콘크리트 교각의 탄소량 평가)

  • Kim, Seong-Jun;Kim, Young-Joon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, $CO_2$ amount is evaluated considering repairing timing and unit $CO_2$ amount per repair method including various stage of material manufacturing, moving, and construction. Four mix proportions with mineral admixture are considered and repairing timing/numbers are simulated based on the results from Life 365 which can handle chloride penetration. Furthermore two repair methods (simple cover concrete replacement and replacement with electro-chemical method for removing chloride content) are considered and the related $CO_2$ emissions are evaluated. From the study, the case with high W/B (water to binder ratio) ratio shows smaller $CO_2$ emission in construction stage but it increases more rapidly with increasing number of repair. $CO_2$ emission considering electro-chemical method greatly increases with the increasing unit $CO_2$ for the repairing method. The numbers of jumping step (repairing number) are evaluated to be 9 for WB37-OPC, 18 for WB50-OPC, 4 for WB40-SG, and 7 for WB47-SG respectively. RC structures with the longer maintenance free period are evaluated to be advantageous for saving $CO_2$ emission.

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate (액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구)

  • Lee, Kyuyeon;Lee, Byung Sun;Shin, Doyun;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.654-659
    • /
    • 2013
  • This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

A High-resolution Study of Isotopic Compositions of Precipitation (고해상도 강우동위원소변동에 대한 연구)

  • Lee, Jeonghoon;Kim, Songyi;Han, Yeongcheol;Na, Un-Sung;Oh, Yoon Seok;Kim, Young-Hee;Kim, Hyerin;Ham, Ji-Young;Choi, Hye-Bin;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.371-377
    • /
    • 2015
  • Isotopic compositions of precipitation have been used to understand moisture transport in the atmosphere and interactions between precipitation and groundwater. Isotopic compositions of speleothems and ice cores, so called, ''paleoarchives'', can be utilized to interpret climate of the past and global circulation models (GCMs). The GCMs are able to explain the paleoarchives, can be validated by the precipitation isotopes. The developments of stable isotope analyzers make high-resolution isotopic studies feasible. Therefore, a high-resolution study of precipitation isotopes is needed. For this study, precipitation samples were collected for every 5 to 15 minutes, depending on precipitation rates, using an auto-sampler for precipitation isotopes near coastal area. The isotopic compositions of precipitation range from -5.7‰ (-40.1‰) to -10.8‰ (-74.3‰) for oxygen (hydrogen). The slope of ${\delta}^{18}O-{\delta}D$ diagram for the whole period is 6.8, but that of each storm is 5.1, 4.2, 7.9 and 7.7, respectively. It indicates that evaporation occurred during the first two storms, while the latter two storm did not experience any evaporation. The isotopic fractionations of precipitation has significant implications for the water cycle and high-resolution data of precipitation isotopes will be needed for the future studies.

Case study on the cause of failure and characteristics of soil at a collapsed cut-slope at the ${\bigcirc}{\bigcirc}$ Detour, Jeonranam-Do (전라남도 ${\bigcirc}{\bigcirc}$우회도로 비탈면 붕괴발생원인 및 토사지반특성 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Hwang, Jin-Hyun;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.313-322
    • /
    • 2011
  • On September 2007, numerous slopes at Jeonranam-Do collapsed as a result of rainfall related to Typhoon Nari. Failure occurred at a road cut-slope on the ${\bigcirc}{\bigcirc}$ detour road, damaging transport infrastructure. This study aims to determine the cause of failure based on field investigations, the geotechnical properties of soil, clay mineral composition, and quantitative analysis. The studied cut slope consists of weathered soil that originated from volcanic rocks, and minor faults and a mafic dyke. Surface water tends to seep into the soil because the roadway is not sealed and because of poorly installed drainage. Sieve and XRD analyses indicate that soils in the failure zone are ML and CH, which are prone to swelling due to the presence of clay minerals such as smectite and vermiculite. The slope failed due to the improper construction of drainage facilities, the presence of geological weak zones, and high soil contents of swelling clay.