• Title/Summary/Keyword: Mindlin

Search Result 233, Processing Time 0.02 seconds

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Eigenvalue Analysis of Rectangular Mindlin Plates by Chebyshev Pseudospectral Method

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.370-379
    • /
    • 2003
  • A study of free vibration of rectangular Mindlin plates is presented. The analysis is based on the Chebyshev pseudospectral method, which uses test functions that satisfy the boundary conditions as basis functions. The result shows that rapid convergence and accuracy as well as the conceptual simplicity are achieved when the pseudospectral method is applied to the solution of eigenvalue problems. Numerical examples of rectangular Mindlin plates with clamped and simply supported boundary conditions are provided for various aspect ratios and thickness-to length ratios.

Eigenvalue analysis of axisymmetric circular Mindlin plates by pseudospectral method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.44-49
    • /
    • 2002
  • A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics research community. Clamped, simply supported and flee boundary conditions are considered, and numerical results are presented for various thickness-to-radius ratios.

Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method (의사스펙트럴법을 이용한 원형 Mindlin 평판의 동적특성 해석)

  • Lee, Jin-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1169-1177
    • /
    • 2002
  • A study of fee vibration of circular Mindlin plates is presented. The analysis is based on the pseudospctral method, which uses Chebyshev polynomials and Fourier series as basis functions. It Is demonstrated that rapid convergence and accuracy as well as the conceptual simplicity could be achieved when the pseudospectral method was apt)lied to the solution of eigenvalue problems. Numerical examples of circular Mindlin plates with clamped and simply supported boundary conditions are provided for various thickness-to-radius ratios.

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.

Comparative Study on the Performance of Quadrilateral Plate Elements for the static Analysis of Limear Elastic structures( I );Displacements (사각형 판 유한 요소들의 정적 성능 비교 분석 I)

  • 이병채;이용주
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.91-104
    • /
    • 1990
  • Static performance of quadrilateral plate elements was compared through numerical experiments. Sixteen plate elements were selected for comparison from the literature, which were displacement elements, equilibrium elements, mixed elements or hybrid elements based on the Kirchhoff theory or the Mindlin theory. Thin plate bending problems, such as square plate problems, rhombic plate problems, circular plate problems and cantilevered plate problems, were modeled by various meshes and solved under various kinds of boundary conditions. Kirchhoff elements were not so good as Mindlin elements in view of efficiency and convergence. Hinton's elements resulted in the best results for the problems considered with respect to efficiency, convergence and reliability but in some problems they also resulted in more or less inaccurate solutions.

  • PDF

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.

Development of 4-node Plate Bending Element using Nonconforming Displacement Modes (비적합 변위모드를 이용한 4절점 평판휨요소의 개발)

  • 박용명;최창근
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.179-188
    • /
    • 1997
  • A 4-node element for efficient finite element analysis of plate bending is presented in this paper. This element is formulated based on Mindlin plate theory to take account of shear deformation. To overcome the overestimation of shear stiffness in thin Mindlin plate element, especially in the lower order element, five nonconforming displacement modes are added to the original displacement fields. The proposed nonconforming element does not possess spurious zero-energy mode and does not show shear locking phenomena in very thin plate even for distorted mesh shapes. It was recognized from benchmark numerical tests that the displacement converges to the analytical solutions rapidly and the stress distributions are very smooth. The element also provides good results for the case of high aspect ratio.

  • PDF