• Title/Summary/Keyword: Mindlin's plate theory

Search Result 54, Processing Time 0.02 seconds

Material Nonlinear Fracture Analysis of Reinforced Concrete Shell (철근콘크리트 쉘의 재료비선형 파괴해석)

  • Jin, Chi Sub;Cha, Young Soo;Jang, Heui Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 1989
  • A finite element program for material nonlinear fracture analysis of reinforced concrete shell was developed. This method can be used to trace the load-displacement response and crack propagation through the elastic and inelastic ranges. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. The validity of the present program was proved by comparing the numerical results with Hedgren's experimental data.

  • PDF

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle

  • Tayeb, Tayeb Si;Zidour, Mohamed;Bensattalah, Tayeb;Heireche, Houari;Benahmed, Abdelillah;Bedia, E.A. Adda
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The incorporation of carbon nanotubes in a polymer matrix makes it possible to obtain nanocomposite materials with exceptional properties. It's in this scientific background that this work was based. There are several theories that deal with the behavior of plates, in this research based on the Mindlin-Reissner theory that takes into account the transversal shear effect, for analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of the model are derived and the critical loads of linear and parabolic distribution of carbon nanotubes are obtained. With different disposition of nanotubes of carbon in the polymer matrix, the effects of different parameters such as the volume fractions, the plate geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling.

An Analysis of the Hydroelastic Response of Large Floating Structures in Oblique Waves (사파중에 놓인 거대 부유체의 응답에 대한 유탄성 해석)

  • In-H. Sim;Jae-D. Yoon;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • In this paper, the fluid-structure interaction of large floating structures has been rigorously analyzed and the shear effect on the structural deformation has been investigated in oblique waves. A constant panel method(CPM) based on the Green function method is implemented for computing the hydrodynamic pressure, while a finite element method(FEM) is applied for the structural response based on the Mindlin plate theory with including shear deformation. In order to validate the method, we compared numerical results with experimental ones of Mega Float carried out by Yago & Endo in head waves. General behavior shows good agreement but the local displacement at the ends is slightly different. The numerical results show that the radiation pressure due to the fluid-structure interaction is locally larger than that of wave excitation and mooring devices greatly reduce the response. It is observed that the shear effects among the total deformation constitutes about 4% in the case of Mega Float in oblique waves.

  • PDF