• 제목/요약/키워드: Mind bomb1

검색결과 2건 처리시간 0.019초

Mind Bomb1 and DeltaD are Localized into Autophagosome after Endocytosis in Zebrafish during Neurogenesis

  • Kim, Min-Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권3호
    • /
    • pp.215-221
    • /
    • 2011
  • Endocytosis of the Notch ligand, DeltaD, by mind bomb1 is indispensable for activation of Notch in cell fate determination, proliferation, and differentiation during zebrafish neurogenesis. Loss of mind bomb1 activity as an E3 Ubiquitin ligase causes the accumulation of deltaD at the plasma membrane and results in the ectopic neurogenic phenotype by activation of Notch in early zebrafish embryogenesis. However, the regulatory mechanism of deltaD during neurogenesis is not identified yet. This study aims to analyze the pathway of mib1 and deltaD after endocytosis in vivo during zebrafish embryogenesis. Mind bomb1 and deltaD are co-localized into autophagosome and mutant form of mind bomb1 fails to cargo deltaD into autophagosomes. These findings suggest that mind bomb I mediates deltaD regulation by autophagy in an ubiquitin-dependent manner during zebrafish embryogenesis.

Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

  • Kim, Somi;Kim, TaeHyun;Lee, Hye-Ryeon;Kong, Young-Yun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.515-522
    • /
    • 2015
  • Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.