• Title/Summary/Keyword: Min-bacteria

Search Result 1,898, Processing Time 0.027 seconds

Antibacterial Activity against Pathogenic Bacteria of Lactiplantibacillus argentratensis Isolated from Blueberries (블루베리로부터 분리된 Lactiplantibacillus argentratensis의 병원성균에 대한 항균활성)

  • Natsag Lkhagvasuren;Gil-Ha Kim;Batchimeg Namshir;Woan Sub Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.191-202
    • /
    • 2023
  • In this study, lactic acid bacteria (LAB) was isolated from blueberries. The isolated LAB were rod-shaped and gram-positive, as shown using gram staining. In addition, the identified bacteria showed high homology to Lactiplantibacillus argentoratensis. The culture supernatant was isolated from L. argentoratensis and its antibacterial activity against the pathogenic bacteria Salmonella and Escherichia was analyzed. Culture supernatants of L. argentoratensis significantly inhibited the growth of Salmonella. Enteritidis NCCP 16947, Salmonella Typhimurium NCCP 16960, and Salmonella. Thompson NCCP 11704. Interestingly, the higher the concentration of the culture supernatant, the more significant was the antibacterial activity. Additionally, the culture supernatant of L. argentoratensis showed significant antibacterial activity against Escherichia strains. To determine whether the antibacterial substance is stable to heat and pH, the LAB culture supernatant was heat-treated under 65℃ for 30 min, 75℃ for 15 min, 85℃ for 10 min, and 100℃ for 5 min. Measurement of antibacterial activity against pathogenic strains by adding 5% of heat-treated culture medium showed the same antibacterial activity as before heat treatment. However, in a test where the pH of the culture supernatant was adjusted to 7.0 from 3.73, no antibacterial activity was observed.

Studies on the Changes in Chemical Composition and Microbiological Aspects of Raw Milk by Microwave Heating (Microwave 열처리에 의한 원유의 화학적 및 미생물학적 성상의 변화에 관한 연구)

  • Shin, Byeong Hong;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.181-198
    • /
    • 1998
  • In order to determine the optimum pasteurization conditions by microwave heating(MWH) at $50^{\circ}C{\sim}70^{\circ}C$ for 30 minute compared with water bath heating(WBH) at $65^{\circ}C$ for 30minute during storage at $5^{\circ}C$, the chemical composition, microbiological changes and keeping quality were examined and the results were as follows: 1. The fat protein lactose, total solid contents of raw milk, at $50{\sim}70^{\circ}C$ for 30 min. in MWH and at 65 for $30^{\circ}C$ min. in WBH did not changed significantly during the storage at $5^{\circ}C$. 2. The pH and acidity for the raw milk untreated were 6.75 and 0.16%, and those of MWH heated and WBH milk wee 6.75~6.50 and 0.16%~0.19%, phosphatase test were negative at $61^{\circ}C$ for 20 min. at $62^{\circ}C$ for 15 min. at $63^{\circ}C$ for 10 min. at $64^{\circ}C$ for 5 min. at $65^{\circ}C$ for 5 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. 3. Whey protein content was $18.53mg/m{\ell}$ in raw milk untreated, however, those were decreased as the heating temperature increased. The proteolytic activity of treated milk by WBH(44%) was lower than that by MWH(94%). 4. Total bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.8{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.4{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because total bacteria count did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging, Also, total bacteria counts for treated milk were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 5. Coliform bacteria counts were $2.6{\times}10^3CFU/m{\ell}$ in raw milk untreated. There were not detected at $55^{\circ}C{\sim}70^{\circ}C$ for 30 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. Coliform bacteria counts were not detected after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 6. Thermoduric bacteria counts were $5.2{\times}10^4CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $1.9{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30min. in MWH and $2.2{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because thermoduric bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10days storaging. Also, thermoduric bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 7. Psychrotrophic bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.0{\times}10^1CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$for 30 min. in WBH. Because psychrotrophic bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging. Also, psychrotrophic bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH.

  • PDF

Characterization of Uranium Removal and Mineralization by Bacteria in Deep Underground, Korea Atomic Energy Research Institute (KAERI) (한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성)

  • Oh, Jong-Min;Lee, Seung-Yeop;Baik, Min-Hoon;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2010
  • Removal and mineralization of dissolved uranium by bacteria in KURT (KAERI Underground Research Tunnel), Korea Atomic Energy Research Institute (KAERI) was investigated. Two different bacteria, IRB (iron-reducing bacteria) and SRB (sulfate-reducing bacteria) was used, and minerals formed by these bacteria were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared to uranyl ions, ferric ions were preferentially reduced by IRB, showing that there is no significant reduction and removal of uranium. However, uranium concentration considerably decreased by addition of Mn(II). Results show that a sulfide mineral such as mackinawite (FeS) is formed by SRB respiration through combination of Fe(II) and S without manganese sulfide formation. In the presence of Mn(II), however, uranium is removed effectively, suggesting that the sorption and incorporation of uranium could be affected by Mn(II) onto the sulide minerals.

Transfer rates of pathogenic bacteria during pork processing

  • Park, Jung min;Koh, Jong Ho;Cho, Min Joo;Kim, Jin Man
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.912-921
    • /
    • 2020
  • We examined the rates of pathogenic bacterial cross-contamination from gloves to meat and from meat to gloves during pork processing under meat-handling scenarios in transfer rate experiments of inoculated pathogens. The inoculated pork contained ~5-6 Log10 CFU/g pathogenic bacteria like Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), and Salmonella enterica subsp. enterica (Sal. enteritidis). On cotton gloves, after cutting the pork, the cutting board, knife, and cotton gloves showed 3.07-3.50, 3.29-3.92 and 4.48-4.86 Log10 CFU/g bacteria. However, when using polyethylene gloves, fewer bacteria (3.12-3.75, 3.20-3.33, and 3.07-3.97 Log10 CFU/g, respectively) were transferred. When four pathogens (6 Log10 CFU/g) were inoculated onto the gloves, polyethylene gloves showed a lower transition rate (cutting board 2.47-3.40, knife 2.01-3.98, and polyethylene glove 2.40-2.98 Log10 CFU/g) than cotton gloves. For cotton gloves, these values were 3.46-3.96, 3.37-4.06, and 3.55-4.00 Log10 CFU/g, respectively. Use of cotton gloves, polyethylene gloves, knives and cutting boards for up to 10 hours in a meat butchering environment has not exceeded HACCP regulations. However, after 10 h of use, 3.09, 3.27, and 2.94 Log10 CFU/g of plate count bacteria were detected on the cotton gloves, cutting board, and knives but polyethylene gloves showed no bacterial count. Our results reveal the transfer efficiency of pathogenic bacteria and that gloved hands may act as a transfer route of pathogenic bacteria between meat and hands. The best hand hygiene was achieved when wearing polyethylene gloves. Thus, use of polyethylene rather than cotton gloves reduces cross-contamination during meat processing.

Fluorescent detection of bacteria associated with gingival sulcus epithelium (DNA 형광 염색을 이용한 치은열구상피부착 세균에 관한 연구)

  • Shin, Seung-Yun;Lee, Sang-Hyun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.639-644
    • /
    • 2008
  • Purpose: The aim of this study was to compare the number of live and dead bacteria attached to, or within, the stratified squamous epithelium lining the tissue side of the gingival sulcus. Materials and Methods: A total of 50 patients was examined and classified into healthy or diseased sites according to inflammatory status of the gingival tissue. The surface of stratified squamous epithelium was removed by gentle scraping of the gingival sulcus with curettes. The cells were processed in the laboratory by density-gradient centrifugation to separate the epithelial cells from the loose bacteria and debris. The LIVE/$DEAD^{(R)}$ $BacLight^{TM}$ Bacterial Viability Kit was applied and the specimens were observed by an epifluorescent microscope and the number of bacteria was counted. Results: Live and dead bacteria were stained to green and red, irrespectively. Generally, the number of total bacteria in the diseased sites was significantly higher than in the healthy sites. The mean number of detected bacteria in the diseased sites was $58.6{\pm}36.0$ (red bacteria $10.4{\pm}9.2$ / green bacteria $48.2{\pm}30.5$), while it was $1.5{\pm}1.7$ in the healthy sites (red bacteria $0.1{\pm}0.3$ / green bacteria $1.4{\pm}1.5$). The percentage of red bacteria was $17.5{\pm}11.2%$ in the diseased sites and $2.0{\pm}5.8%$ in the healthy sites. Conclusion: The total number of bacteria in the diseased sites was significantly higher than that of the healthy sites. The ratio and the number of red bacteria were also significantly higher in the diseased sites.

Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

  • Lim, Eun-Seo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.10
    • /
    • pp.42.1-42.10
    • /
    • 2016
  • The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB) isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0-8.0 and heating for 10 min at $80^{\circ}C$; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, ${\alpha}$-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

CpG-DNA induces bacteria-reactive IgM enhancing phagocytic activity against Staphylococcus aureus infection

  • Kim, Te Ha;Kim, Dongbum;Lee, Heesu;Kwak, Min Hyung;Park, Sangkyu;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.635-640
    • /
    • 2019
  • CpG-DNA triggers the proliferation and differentiation of B cells which results in the increased production of antibodies. The presence of bacteria-reactive IgM in normal serum was reported; however, the relevance of CpG-DNA with the production of bacteria-reactive IgM has not been investigated. Here, we proved the function of CpG-DNA for the production of bacteria-reactive IgM. CpG-DNA administration led to increased production of bacteria-reactive IgM both in the peritoneal fluid and serum through TLR9 signaling pathway. When we stimulated B cells with CpG-DNA, production of bacteria-reactive IgM was reproduced in vitro. We established a bacteria-reactive monoclonal IgM antibody using CpG-DNA stimulated-peritoneal B cells. The monoclonal IgM antibody enhanced the phagocytic activity of RAW 264.7 cells against S. aureus MW2 infection. Therefore, we suggest that CpG-DNA enhances the antibacterial activity of the immune system by triggering the production of bacteria-reactive IgM. We also suggest the possible application of the antibodies for the treatment of antibiotics-resistant bacterial infections.

Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo;Chung, Chang-Soo;Lee, Sang-Hee;Hong, Gi-Hoon;Kirn, Suk-Hyun;Park, Soung-Yun;Yoon, Seong-Jin;Lee!, Seung-Min
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2005
  • Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

Amount of bacteria over time according to the use of antibacterial and wet wipes behavior (항균티슈와 물티슈 사용에 따른 시간별 세균 수 변화의 차이)

  • Han, Su-Min;Kim, Eun-Ji;Seomoon, Hye-Ji;Lim, Su-Min;Han, Ji-Young;Koong, Hwasoo
    • Journal of Korean Dental Hygiene Science
    • /
    • v.5 no.1
    • /
    • pp.21-27
    • /
    • 2022
  • Background: This study was conducted to analyze the time for re-detection of bacteria after surface disinfection using wet wipes, isopropyl alcohol, and benzalkonium chloride antibacterial tissue and provide standards for re-execution of surface disinfection with wet and antibacterial tissues. Methods: Seven laptops were wiped with wet tissue and isopropyl alcohol and benzalkonium chloride antibacterial tissues. Test areas were rubbed with a sterile cotton swab at baseline and after 30, 60, and 120 min. After plating on a tryptic soy agar medium, the number of colonies was counted by culturing at 36.5℃ for 24 h. Results: The average number of bacterial colonies was 5.85 ± 4.33 before isopropyl alcohol wiping and nil after wiping. The average number of bacterial colonies was 12.28 ± 14.67 benzalkonium chloride wiping and nil after wiping. Before wiping with wet wipes, the average number of bacterial colonies on laptop surfaces was 3.42 ± 5.22. Bacteria decreased after wiping with wet wipes but increased again over time. Conclusions: Wet wipes can temporarily reduce bacteria but are unsuitable for removing bacteria.

Inactivation of Microorganisms and Enzymes in Foxtail Millet Yakju by High Hydrostatic Pressure Treatment (초고압 처리에 의한 좁쌀약주의 미생물 살균 및 효소 불활성화)

  • 좌미경;임상빈;목철균;박영서
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1221-1226
    • /
    • 2003
  • High hydrostatic Pressure was applied to Foxtail Millet Yakju to investigate the effects of high pressure on inactivation of microorganisms and enzymes. Total bacteria, lactic acid bacteria and yeast in untreated Yakju were $1.5{\times}$10$^4$,1.9${\times}$10$^4$ and 1.4${\times}$10$^4$ CFU/mL, respectively. Total bacterial count was reduced to 4.1${\times}$l0$^2$ CFU/mL, while lactic acid bacteria and yeast were sterilized completely in Yakju heated at $65^{\circ}C$ for 15 min. Lactic acid bacteria and yeast decreased greatly with the increase of treatment pressure, and were sterilized completely in Yakju treated at more than 300 ㎫ for 10 min/$25^{\circ}C$. Total bacteria were not completely sterilized with pressurization of even 600 ㎫ at room temperature and reduced to 2 log cycle even at $65^{\circ}C$. Total bacteria decreased by 2∼3 log cycle with the increase of treatment time from 10 to 60 min at $25^{\circ}C$/300 ㎫. Pressurization of Yakju caused a partial inactivation of $\alpha$ -amylase and glucosamylase, and the activities of $\alpha$ -amylase and glucoamylase decreased by 18.1% and 21.1%, respectively at $25^{\circ}C$/600 ㎫/10 min. Activities of $\alpha$ -amylase and glucoamylase decreased with the increase of temperature, and 22.2% and 32.1% of the original activity were remained with the treatment at $65^{\circ}C$/300 ㎫/10 min, respectively. Enzyme activities decreased slightly with the increase of treatment time at $65^{\circ}C$/300 ㎫.