• Title/Summary/Keyword: Min-Max Octree

Search Result 3, Processing Time 0.061 seconds

Min-Max Octree Generation Using CUDA (CUDA를 이용한 최대-최소 8진트리 생성 기법)

  • Lim, Jong-Hyeon;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.191-196
    • /
    • 2009
  • Volume rendering is a method which extracts meaningful information from volume data and visualizes those information. In general, since the size of volume data gets larger, it is very important to devise acceleration methods for interactive rendering speed. Min-max octree is data structure for high-speed volume rendering, however, its creation time becomes long as the data size increases. In this paper, we propose acceleration method of min-max octree generation using CUDA. Firstly, we convert one-dimensional array from volume data using space filling curve. Then we make min-max octree structures from the sequential array and apply them to acceleration of volume ray casting.

  • PDF

Acceleration of GPU-based Volume Rendering Using Vertex Splitting (정점분할을 이용한 GPU 기반 볼륨 렌더링의 가속 기법)

  • Yoo, Seong-Yeol;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Visualizing a volume dataset with ray-casting which of visualization methods provides high quality image. However it spends too much time for rendering because the size of volume data are huge. Recently, various researches have been proposed to accelerate GPU-based volume rendering to solve these problems. In this paper, we propose an efficient GPU-based empty space skipping to accelerate volume ray-casting using octree traversal. This method creates min-max octree and searches empty space using vertex splitting. It minimizes the bounding polyhedron by eliminating empty space found in the octree traveral step. The rendering results of our method are identical to those of previous GPU-based volume ray-casting, with the advantage of faster run-time because of using minimized bounding polyhedron.

Efficient GPU Isosurface Ray-casting of BCC Datasets (효율적인 BCC 볼륨 데이터의 GPU 등가면 광선투사법)

  • Kim, Minho;Kim, Hyunjun;Sarfaraz, Aaliya
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.2
    • /
    • pp.19-27
    • /
    • 2013
  • This paper presents a real-time GPU (Graphics Processing Unit) isosurface ray-caster that improves the performance by 4-7 folds from our previous method, while keeping the superior visual quality. Such an improvement is achieved by incorporating an efficient empty-space skipping scheme and an analytic normal computation. The empty-space skipping scheme is done by building an min/max octree computed from the BB(Bernslein-B$\acute{e}$zier)-form of spline pieces and the analytic normal Formula provides not only a nice visual quality but also an improved evaluation performance.