• Title/Summary/Keyword: Milling Machining

Search Result 630, Processing Time 0.028 seconds

Effect of Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭가공에서 전해복합의 효과)

  • 주종길;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1025-1028
    • /
    • 2001
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. From the experimental result, it was confirmed that effect of cutting force reduction and finer surface roughness can be obtained in a certain condition of ball end milling and electrolytic machining conditions.

  • PDF

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

Characteristics of Surface Roughness by Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭에서 전해복합에 의한 표면거칠기 특성)

  • 이영표;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.959-962
    • /
    • 2000
  • A new method compounding the electrolytic machining with ball end milling process to improve machined surface toughness was examined. From this study, it was confirmed that much smaller cutting force and finer surface roughness can be obtained in a certain condition of ball end milling and electrolytic machining conditions.

  • PDF

Development of Face Milling Cutter Body System for High Speed Machining (고속가공을 위한 정면밀링커터 바디시스템 개발)

  • Jang Sung-Min;Maeng Min-Jae;Cho Myeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

A Study on the Micro Parts Manufacturing Technology by Micro End-milling (마이크로 앤드밀링에 의한 미소 부품 가공기술 연구)

  • Je, T.J.;Lee, J.C.;Choi, H.;Lee, E.S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

A Study on the Micro Machining Using Micro Machine (초소형 밀링머신을 이용한 미세절삭 가공)

  • 배영호;고태조;김희술;정병묵;김재건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1203-1206
    • /
    • 2003
  • After the micro turning lathe was developed in the last year by AMR Laboratory, a micro-milling machine is developed for micro machining. This machine is integrated with PZT-driven micro-sliders, micro-linear encoders, air turbine spindle which has maximum 150.000 rpm. It is applicable to milling and drilling machining. This paper shows the possibility of micro machining and characteristics of micro end milling process by using micro machine. A machining of micro barrier ribs using 0.2 mm flat type end mill was achieved by micro-milling machine. As experimental results show the machining capability and positional accuracy of this machine is good enough for machining micro parts.

  • PDF

Utilization of machining templates to improve 5-axis CAM machining process (5축 CAM 가공 작업 프로세스 개선을 위한 가공 템플릿 활용)

  • Lee, Dong-Cheon;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2017
  • Currently, a lot of efforts to make increases the manufacturing efficiency have tried and there is growing the interest to implementing the machining operation through CAM automation and optimization. This kind of movement has shown gradually in 5X milling as well as 3X milling task. By the way, in case of 5X milling, it is difficult to hire the CAM experts who is an experience for 5X machining and also it has too big trouble to use them due to high cost. For this reason, you can see the manufacturer who is concern the CAM S/W to provide the NC automation program that beginners can generate easily the 5X milling in short term and the existing 5X milling process can be improved. These requirements need to make a NC automation process including the practical machining strategies same as the generation by NC expert. In order to support this, it is necessary to directly apply the 3D machining part based on NC template which includes the machining procedures, standard cutter library, auto machine area selection, analyze tool for part shape, machining condition setting considering the material stiffness to be provided by CimatronE and it should be created the 5axis machining data by a minimized operation. With user-friendly, CimatronE's NC machining automation tools improve the 5-axis machining process and speed up the process, maximizing work efficiency and improving product productivity compared to existing machining tasks.

Evaluation on Shape Machining of Dies and Molds in High speed Machining using Ball-End Milling (볼 엔드밀을 이용한 고속가공에서 금형제품의 형성가공 특성파악)

  • 김경균;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.143-146
    • /
    • 1995
  • Due to the recent growth of die/mold machining industry, demands for the high-precision and the high0quality of die product are increasing rapidly. Free surfaces of die/mold are often manufactured using the ball-end milling process. It is difficult to find the cutting condition of the ball-end milling process due to the free form machining for the various tool paths on inclined surface.

  • PDF

Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill (필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축)

  • 신동혁;김종일;김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF