• Title/Summary/Keyword: Millimeter structure

Search Result 139, Processing Time 0.028 seconds

Design and Fabrication of the 94 GHz Branch-line Bandpass Filter using CPW structure (CPW 구조를 이용한 94 GHz Branch-line 대역통과 여파기의 설계 및 제작)

  • Kwon, Hyuk-Ja;Bang, Suk-Ho;Lee, Sang-Jin;Yoon, Jin Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.36-41
    • /
    • 2007
  • We report the 94 GHz CPW branch-line bandpass filter for planar integrated millimeter-wave circuits. The branch-line coupler operates as a transversal filtering section by connecting the coupling ports to the open load stubs and taking the isolation port as the output node. For design of the 94 GHz branch-line bandpass filter, we built the CPW library and optimized the characteristic impedances and the lengths of the branch-line coupler and the open load stubs. The fabricated 94 GHz bandpass filter exhibits an insertion loss of 2.5 dB with an 11.7 % 3 dB relative bandwidth and the return loss is -18.5 dB at a center frequency of 94 GHz.

VLBI STUDIES OF Sgr A*

  • SHEN ZHI-QIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.261-266
    • /
    • 2005
  • This paper reviews the progress in the VLBI (Very Long Baseline Interferometry) studies of Sgr A$\ast$, the best known supermassive black hole candidates with a dark mass concentration of $4 {\times} 10^6 M_{\bigodot}$ at the center of the Milky Way. The emphasis is on the importance of the millimeter and sub-millimeter VLBI observations in the detection of Sgr A$\ast$'s intrinsic structure and search for the structural variation.

30 GHz 세라믹 패키지의 제작 및 측정

  • 서재옥;김진양;박성대;이우성;강남기;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.147-151
    • /
    • 2002
  • We fabricated and characterized a millimeter-wave ceramic package in a frequency range from 6 to 40㎓ using the LTCC(Low Temperature Cofired Ceramic) Technology and TRL(Thru-Reflect-Line) calibration method. From these measurement results, the fabricated feed-through structure achieved 0.5 dB, 14 dB of the insertion loss and the return loss at 30 GHz respectively. This ceramic package will be useful for MMIC(Monolithic Microwave Integrated Circuit) modules.

  • PDF

V-band CPW 3-dB Directional Coupler using Tandem Structure (Tandem구조를 이용한 V-band용 CPW 3-dB 방향성 결합기)

  • Moon Sung-Woon;Han Min;Baek Tae-Jong;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.41-48
    • /
    • 2005
  • We design and fabricate 3-dB tandem directional coupler using the coplanar waveguide structure which is applicable to balanced amplifiers and mixers for 60 GHz wireless local area network system. The coupler comprises the multiple-sectional parallel-coupled lines to facilitate the fabrication process, and enable smaller device size and higher directivity than those of the conventional 3-dB coupler employing the edge-coupled line. In this study, we adopt the structure of two-sectional parallel-coupled lines of which each single-coupled line has a coupling coefficient of -8.34 dB and airbridge structure to monolithically materialize the uniplanar coupler structure instead of using the conventional multilayer or bonded structure. The airbridge structure also supports to minimize the parasitic components and maintain desirable device performance in V-band (50$\~$75 GHz). The measured results from the fabricated couplers show couplings of 3.S$\~$4 dB and phase differences of 87.5$^{\circ}{\pm}1^{\circ}$ in V-band range and show directivities higher than 30 dB at a frequency of 60 GHz.

Development of a V-Band Millimeter-Wave Source Module

  • Kwon, Jae-Yong;Lee, Dong-Joon;Bakti, Aditia Nur;Angin, Windi Kurnia Perangin
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.225-228
    • /
    • 2016
  • KRISS-V, a V-band millimeter-wave source module for a primary RF power standard and calibration system developed by the Korea Research Institute of Standards and Science is here presented. The output power of KRISS-V is several times higher than that of commercial amplifier/multiplier chains and is highly stable (the standard deviations of output power are less than 0.01% in the worst case). The spectral purity of KRISS-V is high enough to consider it a single-tone signal generator. We also added programmable attenuation capability to KRISS-V for remote power control. Moreover, the in-house source module is cost-effective and adaptable to various measurement schemes. The structure of the model as well as detailed component information are introduced so that it can be reproduced.

Research on Fourth Harmonic Mixer at W Band in the Imaging System

  • Xiang, Bo;Dou, Wenbin;He, Minmin;Wang, Zongxin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • This paper presents a novel fourth harmonic mixer with new structure. The traditional 3-ports fourth harmonic mixer and the novel fourth harmonic mixer are designed by ADS, HFSS and CST simulator. The mixers have been fabricated and tested. The size of the traditional 3-ports fourth harmonic mixer is $12{\times}15$ mm, and the best conversion loss is 18.7 dB according to the measurement. Since the traditional 3-port mixer size is too large to be ranked, we design a novel fourth harmonic mixer for imaging system. The width of the mixing module in the novel fourth harmonic mixer is only 3.65 mm, and this size is fully capable to meet the mixer unit space which is not greater than 5 mm. The simulation result shows that the mixer has good performance, and the experiment result shows that the best conversion loss of the novel fourth harmonic mixer is 16.3 dB at RF signal of 91.3 GHz.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

A Novel Design of High Power Amplifier Employing Photonic Band Gap in Millimeter Wave Band

  • Seo Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 2006
  • In this paper, we have designed and fabricated the high power amplifier employing PBG(Photonic Band-Gap Structure) to improve the linearity of the amplifier in the millimeter wave band. The fabricated amplifier using MMIC(TGA1073G) has operated about 24 GHz band and the PBG has resulted in 35 dB suppression about 49 GHz where the second harmonic occurs due to the amplifier. As a result, the output power has been 24.43 dBm and 13.2 dBc of the IMD has been improved. Also, the PAE is obtained to 14.96 % of the amplifier employing the PBG structure in Ka band.

A Study on Spatial Combining power Amplifiers for Backhaul of 5G cellular systems (5세대 이동통신 백홀용 공간 결합 전력 증폭기에 관한 연구)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • In this paper we proposed a new structure of spatial combining power amplifier working in 60GHz global unlicensed band(56-64GHz) for the backhaul in the 5 generation mobile systems. The proposed structure is suitable to realize an antipodal finline transition in millimeter wave band, in which the size of cross section of waveguide becomes about a few mm ${\times}$ a few mm, due to its compact structure of the transition and shows effective heat sinking characteristics because its ground plane can contact to the body metal. However, the HFSS simulation results showed the return loss improvement by 1.27dB and the same insertion loss of -1.65dB compared with the conventional structure, which said nevertheless the advantages, there was no deterioration in the performance.

High-performance 94 GHz Single Balanced Mixer Based on 70 nm MHEMTs and DAML Technology (70 nm MHEMT와 DAML 기반의 하이브리드 링 커플러를 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim, Sung-Chan;Lim, Byoung-Ok;Beak, Tae-Jong;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • We reported 94 GHz, low conversion loss, and high isolation single balanced active-gate mixer based on 70 nm gate length InGaAs/InAlAs metamorphic high electron mobility transistors (MHEMTs). This mixer showed that the conversion loss and isolation characteristics were 2.5 ${\sim}$ 2.8 dB and under -30 dB, respectively, in the range of 93.65 ${\sim}$ 94.25 GHz. The low conversion loss of the mixer is mainly attributed to the high-performance of the MHEMTs exhibiting a maximum drain current density of 607 mA/mm, a extrinsic transconductance of 1015 mS/mm, a current gain cutoff frequency ($f_t$) of 330 GHz, and a maximum oscillation frequency ($f_{max}$) of 425 GHz. High isolation characteristics are due to hybrid ring coupler which adopted dielectric-supported air-gapped microstrip line (DAML) structure using surface micromachined technology. To our knowledge, these results are the best performance demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

  • PDF