• Title/Summary/Keyword: Millerozyma farinosa

Search Result 3, Processing Time 0.014 seconds

Isolation of Xylitol-Producing Thermotolerant Yeast Millerozyma farinosa from Nuruk (누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리)

  • Jung, Eun-Hye;Bae, Young-Woo;Kwun, Se-Young;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.530-535
    • /
    • 2019
  • Diverse types of nuruks (traditional Korean fermentation initiators) were examined in order to isolate thermotolerant yeast strains capable of utilizing xylose as a carbon source. Among twenty yeast strains that grew at 46℃, MBY/L1597 showed a notably higher specific growth rate than other strains. This strain was identified as Millerozyma farinosa. While the control strain M. farinosa KCTC27412 (= CBS7064) did not show xylose reductase (XR) activity and apparent growth at 46℃, M. farinosa MBY/L1597 exhibited XR activity of 4.98 ± 0.49 U/mg protein when NADPH was used as a cofactor. M. farinosa MBY/L1597 cultured at 46℃ produced (9.87 ± 1.00 g/l) xylitol from 20 g/l xylose, corresponding to approximately 50% yield. M. farinosa MBY/L1597 was deposited at the Korean Collection for Type Cultures as KCTC27797.

Successful Treatment of Catheter Related Blood Stream Infection By Millerozyma farinosa with Micafungin: A Case Report

  • Hong, Sun In;Suh, Young Sun;Kim, Hyun-Ok;Bae, In-Gyu;Shin, Jong Hee;Cho, Oh-Hyun
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.362-366
    • /
    • 2018
  • Millerozyma farinosa (formerly Pichia farinosa) is halotolerant yeast mainly found in food and ubiquitous in the environment. It was a rare yeast pathogen, but it has recently emerged as a cause of fungemia in immunocompromised patients. Optimal therapy for invasive fungal infection by this pathogen remains unclear. We report a case of catheter related blood stream infection caused by M. farinosa in a 71-year-old patient who recovered successfully after removal of the central venous catheter and treatment with micafungin.

Isolation of Stress-tolerant Pichia farinosa from Nuruk (누룩으로부터 스트레스 내성이 우수한 Pichia farinosa 균주의 분리)

  • Kwon, Hun-Joo;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.349-354
    • /
    • 2016
  • A variety of nuruks collected in different areas in Korea were explored to isolate sixty yeast strains that was able to grow at 44℃. MBY/L1569 strain, which showed the highest growth rate, was selected and identified as Pichia farinosa (Millerozyma farinosa). The isolated strain exhibited superior resistance to heat, acid, and alkali compared with those of P. farinosa KCTC27412 as a control strain. The specific growth rate of P. farinosa MBY/L1569 at 46℃ was 0.37 ± 0.05 h−1, and the highest specific growth rate of 0.50 ± 0.02 h−1 was obtained when it was grown at pH 7.0 and 37℃ with 50 g/l (w/v) glucose as the carbon source. Under optimum growth conditions, strain MBY/L1569 produced ethanol 19.66 ± 0.68 g/l from glucose 50 g/l, with an approximate yield of 40%. P. farinosa MBY/L1569 was deposited at the Korean Collection for Type Cultures as pichia farinosa KCTC27753.