• Title/Summary/Keyword: Millenium MLC

Search Result 5, Processing Time 0.018 seconds

Comparison and Evaluation of radiotherapy plans by multi leaf collimator types of Linear accelerator (선형가속기의 다엽콜리메이터 형태에 따른 치료계획 비교 평가)

  • Lim, Ji Hye;Chang, Nam Joon;Seok, Jin Yong;Jung, Yun Ju;Won, Hui Su;Jung, Hae Youn;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.129-138
    • /
    • 2018
  • Purpose : An aim of this study was to compare the effect of multi leaf collimator(MLC) types for high dimension radiotherapy in treatment sites used clinically. Material and Method : 70 patients with lung cancer, spine cancer, prostate cancer, whole pelvis, head and neck, breast cancer were included in this study. High definition(HD) MLC of TrueBeam STx (Varian Medical system, Palo Alto, CA) and millenium(M) MLC of VitalBeam (Varian Medical system, Palo Alto, CA) were used. Radiotherapy plans were performed for each patient under same treatment goals with Eclipse (Version 13.7, Varian Palo Alto USA, CA). To compare the indicators of the radiotherapy plans, planning target volume(PTV) coverage, conformity index(CI), homogeneity index(HI), and clinical indicators for each treatment sites in normal tissues were evaluated. To evaluate low dose distribution, $V_{30%}$ values were compared according to MLC types. Additionally, length and volume of targets for each treatment sites were investigated. Result : In stereotatictic body radiotherapy(SBRT) plan for lung, the average value of PTV coverage was reduced by 0.52 % with HD MLC. With SBRT plan using HD MLC for spine, the average value of PTV coverage decreased by 0.63 % and maximum dose decreased by 1.13 %. In the test of CI and HI, the values in SBRT plan with HD MLC for spine were 1.144, 1.079 and the values using M MLC were 1.160, 1.092 in SBRT plan for lung, The dose evaluation of critical organ was reduced by 1.48 % in the ipsilateral lung mean dose with HD MLC. In prostate cancer volumetric modulated arc therapy(VMAT) with HD MLC, the mean dose and the $V_{30}$ of bladder and the mean dose and the $V_{25}$ of rectum were reduced by 0.53 %, 1.42 %, 0.97 %, and 0.69 %, respectively (p<0.05). The average value of heart mean dose was reduced by 0.83 % in breast cancer VMAT with M MLC. Other assessment indices for treatment sites showed no significant difference between treatment plans with two types of MLC. Conclusion : Using HD MLC had a positive impact on the PTV coverage and normal tissue sparing in usually short or small targets such as lung and spine SBRT and prostate VMAT. But, there was no significant difference in targets with long and large such as lung, head and neck, and whole pelvis for VMAT.

  • PDF

Evaluation of Dosimetric Leaf Gap (DLG) at Different Depths for Dynamic IMRT (동적 세기조절방사선치료에서 깊이에 따른 DLG변화 분석)

  • Chang, Kyung Hwan;Kwak, Jungwon;Cho, Byungchul;Jeong, Chiyoung;Bae, Jae Beom;Yoon, Sang Min;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • This study is to evaluate thedosiemtric leaf gap (DLG) at different depths for dynamic intensity-modulated radiation therapy (IMRT) in order to evaluate the absolute dose and dose distribution according to the different positions of tumors and compare the measured and planned the multileaf collimator (MLC) transmission factor (T.F.) and DLG values. We used the 6 MV and 15 MV photon beam from linear accelerator with a Millenium 120 MLC system. After the import the DICOM RT files, we measured the absolute dose at different depths (2 cm, 5 cm, 10 cm, and 15 cm) to calculate the MLC T. F. and DLG. For 6 MV photon beam, the measured both MLC T. F. and DLG were increased with the increase the measured depths. When applying to treatment planning systemas fixed transmission factor with its value measured under the reference condition at depth of 5 cm, although the difference fixed and varied transmission factor is not significant, the dosiemtric effect could be presented according to the depth that the tumor is placed. Therefore, we are planning to investigate the treatment planning system whichthe T. F. and DLG factor according to at the different depths can be applied in the patient-specific treatment plan.

Customer Acceptance Procedure for Clinac (21EX-Platinum)

  • Hong, Dong-Ki;Lee, Woo-Seok;Kwon, Kyung-Tae;Park, Kwang-Ho;Kim, Chung-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.43-61
    • /
    • 2004
  • Purpose : For qualify improvement in radiotherapy, it is important to set up and evaluate equipment (linac) accurately. In addition, technicians are needed to be fully aware of the equipment's detailed quality and its manual. Therefore, the result of ATP is evaluated and introduced, in order that the technicians are skilled by participating in quality assurance (QA) and understanding the quality of the equipment before clinical use. Method and Material : QA for LINAC 21EX (Varian, US) was done with suppliers its procedure was divided into radiation survey, mechanical test, radiation isocenter test, bean performance, dosimetry, and enhanced dynamic wedge and using X-omat film (Kodak), multidata, densitometer, and electrometer. QA of MLC (Millennium, 120 leaf) attached to LINAC and EPID (Portal vision) were done separately. Result : The leakage dose by survey meter was below the tolerance. In mechanical test, collimater, gantry, and couch rotation were less than 1mm, and the angles were ${\pm}0.1^{\circ}$ for digital and ${\pm}0.5^{\circ}$ for mechanical. The alignment test of the light field and crosshair were evaluated less than 1mm. The (a)symmetrical jaw field was less than ${\pm}0.5mm$. The radiation isocenter test using X-mat film was less than 1mm. The consistency of light field and radiation field was less than ${\pm}0.1mm$. PDD for photon energy was less than ${\pm}1\%$ and for electron energy of $90\%,\;80\%,\;50\%,\;and\;30\%$ were evaluated within the tolerance. Flatness for photon and electron energy was evaluated $2.3\%$ (tolerance $3\%$) and $3\%$ (tolerance $4.5\%$), respectively, and symmetry was $0.45\%$ (tolerance $2\%$) and $0.3\%$ (tolerance $2\%$), respectively. Dosimetry test for short term, MU setting, rep rate, and dose rate accuracy of photon and electron energy was within the tolerance depending on energy, MU, and gantry angle. Conclusion : Accuracy and safety for clinical use of Clinac 21EX was verified through customer acceptance procedure and the quality of the equipment was found out. These can reduce the difficulties in using the equipment. Furthermore, it is useful for clinically treatment of patients by technicians' active participations.

  • PDF

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF