• Title/Summary/Keyword: Mill annealing

Search Result 21, Processing Time 0.02 seconds

Effects of Mill Annealing Temperature on the Microstructure and Hardness of Ti-6Al-4V Alloys (밀어닐링 온도가 Ti-6Al-4V 합금의 미세조직 및 경도에 미치는 영향)

  • Seo, Seong-ji;Kwon, Gi-hoon;Choi, Ho-joon;Lee, Gee-young;Jung, Min-su
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.263-269
    • /
    • 2019
  • The mechanism of microstructure and hardness changes during mill annealing of Ti-6Al-4V alloy was investigated. The annealing heat treatments were performed at $675{\sim}795^{\circ}C$ in vacuum for 2 hours, followed by air cooling. The microstructure was observed by using an optical microscope and X-ray diffraction, and hardness was measured by using a Rockwell hardness tester and micro Vickers hardness tester. The average grain size becomes smaller at $675^{\circ}C$ to $735^{\circ}C$ due to the formation of new grains rather than grain growth, but becomes larger at $735^{\circ}C$ to $795^{\circ}C$ due to growth of the already-formed grains rather than formation of new grains. The mill annealing temperature becomes higher, the ${\beta}$ phase fraction decreases and ${\alpha}$ phase fraction increases at room temperature. This is because the higher annealing temperature, the smaller amount of V present in the ${\beta}$ phase, and thus the ${\beta}$ to ${\alpha}$ transformation occurs more easily when cooled to room temperature. As the mill annealing temperature increases, the hardness value tends to decrease, mainly due to resolution of defects such as dislocations from $675^{\circ}C$ to $735^{\circ}C$ and due to grain growth from $735^{\circ}C$ to $795^{\circ}C$, respectively.

Development and Application of Scheduling System in Cold Rolling Mills (냉연 일정계획 시스템의 개발과 적용)

  • Kim, Chang-Hyun;Park, Sang-Hyuck
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.201-210
    • /
    • 2003
  • The purpose of this research is to develop a scheduling system for CAL (Continuous Annealing Line) in Cold Rolling Mill. Based on CSP (Constraint Satisfaction Problem) technique in artificial intelligence, appropriate algorithms to provide schedules satisfying all the constraints imposed on CAL are designed and developed. Performance tests show that the proposed scheduling system outperforms human operators in case of aggregating the same attributes and minimizing the thickness differences between two adjacent coils.

Coarsening of Dispersoid and Matrix Phase in Mechanically Alloyed ODS NiAl (기계적 합금화된 ODS NiAl에서 분산상 및 기지상의 조대화 거동)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • NiAl powders containing oxide dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been consolidated by hot extrusion and hot pressing followed by isothermal annealing to induce microstructure coarsening to improve high temperature properties. Grain growth and dispersoid coarsening kinetics have been investigated as functions of annealing time and temperature. Coarsening of dispersion strengthen NiAl and dispersoid has been discussed. Some clues of secondary recrystallization have been investigated. Mechanical property measurements have been also made and correlated with the microstructures.

  • PDF

Development and application of the new ASC system in No.2 cold rolling mill (2 냉연 신형상제어 시스템 개발 및 적용)

  • 박남수;심민석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1068-1071
    • /
    • 1996
  • Good shape on flat rolled product is necessary to meet today's customer quality requirement. To meet the increasing demand in quality of strip shape from downstream customers, POSCO has replaced the Automatic Shape Control(ASC) system with the existing one that had used noncontact type measuring system at No.2 Cold Rolling Mill, Pohang works in October, 1995. The strip shape is influenced by the profile, roll crown, bending control, skew control system, as well as work roll cooling system. We have used ASC to adjust those factors in Cold Rolling Mill that could get a satisfactory result, almost less than .+-.5 1-unit deviation from the target shape. However, the downstream customer(i.e. Continuos Annealing Line) wants a good shape not only at the moment of exit of roll bite, but after rolling without tension. In this investigation, the difference will be discussed and how deal with this problem.

  • PDF

Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy (미세조직적 인자가 밀소둔된 Ti-6Al-4V 합금의 피로 및 피로균열전파 거동에 미치는 영향)

  • Park, Sanghoo;Kim, Sumin;Lee, Daeun;Ahn, Soojin;Kim, Sangshik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.845-853
    • /
    • 2018
  • To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

A Revamping of Pickling and Tandem Cold Rolling Mill for Producing Stainless Steel (Stainless 생산을 위한 냉연 합리화)

  • Lee D. H.;Ki E. D.;Cho S. B.;Lee K. B.;Kim D. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.109-118
    • /
    • 2004
  • No.2 PCM (Pickling and tandem cold rolling mill) at Pohang works was revamped in 2003. The purpose of this project is to produce carbon and stainless steel using conventional carbon production process, rolling and annealing. This paper introduces the applied facilities and technologies of PCM which are used in production of carbon and stainless steel. To realize the main purpose of this project, POSCO have developed laser weld technology in normal carbon and special steel (stainless, high carbon and high silicon). And this report describes the method which is developed to get down the surface defect of stainless 400 series. After revamping, No.2 PCM can have competitive power in this field and can supply the special steel using carbon rolling process.

  • PDF

Formation of Rolling and Recrystallization Textures in IF Steel Cold-rolled by Cross-Roll Rolling Mill (교차롤로 냉간 압연한 IF 강에서 압연 집합조직과 재결정 집합조직의 형성)

  • Lee, Kye-Man;Kim, Sang-Hyun;Huh, Moo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Interstitial free (IF) steel sheets were cold rolled by the cross-roll rolling mill in which the roll axes are tilted by ${\pm}7.5^{\circ}$ away from the transverse direction of the rolled sample. After cross-roll rolling of IF steel sheets, the cold rolling and the recrystallization textures were distinguished from those observed after rolling in a normal rolling mill. The three-dimensional finite element method (FEM) simulation revealed that the operation of a large shear strain ${\varepsilon}_{23}$ during cross-roll rolling leads to the formation of a distinct cold rolling texture. During recrystallization annealing, a pronounced change in texture components was not observed, which is attributed to the lack of either selective growth or oriented nucleation during the recrystallization process. Cold cross-roll rolling led to the formation of finer recrystallized grains in IF steel sheets.

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

Development of Low Annealing treatment omission steel by new rolling process (새로운 압연Process 구축을 통한 연화소둔 열처리생략강개발)

  • Kim B. H.;Choi K. S.;Heo C. Y.;Kim K. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.27-36
    • /
    • 2004
  • Contemporary objectives for steel rod rolling processing are increasingly complex and often contrasting i.e. obtaining a desired product with optimum combination of properties such as strength, toughness and formability at lower cost. Low-alloy steel rods have been produced with several heat treatments for drawing and forging processes at room temperature. In order to reduce these heat treatments much of the researches concerning of high temperature mechanical behavior of steel rods have been conducted at wire rod mill of POSCO. In this present work, optimizations of rolling temperature and cooling rate for JS-SCM435 are performed to eliminate softening heat treatment(Low Temperature Annealing) for drawing process. The results from the optimization changed the microstructure of rods after rod rolling from Bainite with high tensile strength of 1000Mpa to Pearlite and Ferrite with appropriate strength of 750Mpa that is equivalent tensile strength after softening heat treatment.

  • PDF