• Title/Summary/Keyword: Mill Stand

Search Result 61, Processing Time 0.036 seconds

A Dynamic Set-up Technique for High Accuracy set-up of Continuous Hot Strip Finishing Mill (열간 마무리압연 설정의 정도향상을 위한 동적 설정법)

  • 문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.232-238
    • /
    • 1996
  • A dynamic mill set-up technique was developed to achieva a more precise roll gap set-up of the finishing mill stands for steel strip rolling. In the conventional mill set-up model the set-up values such as roll gap and roll speed are determined before the sheet bar reached the entry side of the finishing mill train and maintained constant until the strip top end passes through the last stand. In the way however a dynamic set-up logic that gives a way to adjust the roll gap value of the final mill stand for the strip ingoing from the ahead of the front stand was developed and attached to the existing set-up model. The roll gap modification is based on the analysis of the observation in the third stand of the finishing mill train. The dynamic set-up model was proved very effective for the more precise mill set-up and for operational stability in the hot strip finishing mill train.

  • PDF

Control Scheme Using Forward Slip for a Multi-stand Hot Strip Rolling Mill

  • Moon, Young-Hoon;Jo, I-Seok;Chester J. Van Tyne
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.972-978
    • /
    • 2004
  • Forward slip is an important parameter often used in rolling-speed control models for tandem hot strip rolling mills. In a hot strip mill, on-line measurement of strip speed is inherently very difficult. Therefore, for the set-up of the finishing mill, a forward slip model is used to calculate the strip speed from roll circumferential velocity at each mill stand. Due to its complexity, most previous researches have used semi-empirical methods in determining values for the forward slip. Although these investigations may be useful in process design and control, they do not have a theoretical basis. In the present study, a better forward slip model has been developed, which provides for a better set-up and more precise control of the mill. Factors such as neutral point, friction coefficient, width spread, shape of deformation zone in the roll bite are incorporated into the model. Implementation of the new forward slip model for the control of a 7-stand hot strip tandem rolling mill shows significant improvement in roll speed set-up accuracy.

Design of a robust gauge controller for a single-stand cold rolling mill (단일 스탠드 냉간 압연 공정을 위한 견실한 두께 제어기의 설계)

  • An, Hyeon-Sik;Yun, Tae-Ung;Kim, Gwang-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.134-141
    • /
    • 1996
  • In this paper, we formulate the mathematical model for a single-stand rolling mill and design control systems for the thickness control at the exit of roll stand and for the tension control of the strip in the process. We propose a thickness controller based on the Internal Model Control structure which can be an effective application when the frequency components of the thickness deviation of the entry strip are known and, show how it can be appropriately combined with BISRA AGC method for a precise thickness control while maintaining the robustness against the modeling error of the mill modulus. It is illustrated by simulations that the proposed thickness control method gives better performance than existing methods and has the robustness against the modeling error of the mill modulus as well.

  • PDF

Identification of Linear Model for Tandem Cold Mill Considering Interstand Interference (스탠드간 간섭현상을 고려한 연속 냉간압연기의 선형모델 규명)

  • Kim, In-Soo;Chang, Yu-Shin;Hwang, I-Cheol;Joo, Hyo-Nam;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.78-86
    • /
    • 2000
  • This study identified a linear time-invariant mathematical model of each stand of a five-stand tandem cold mill. Two model identification methods are applied to construct a linear model of each stand of the tandem cold mill. For the model identification the input-output data that have interstand interference property in tandem cold rolling are obtained from a nonlinear simulator of the tandem cold mill. And a linear model of each stand is identified with N4SD(numerical algorithms for subspace state space system identification) method based on a state-space model and Least Square algorithm based on a transfer function. Furthermore a modeling error of the tandem cold mill is quantitatively analyzed from a maximum singular value plot of error function between an identified nominal model and uncertain model. In conclusion the comparison of the output signals between the existing Taylor linearized model the identified linear model and the nonlinear model of the tandem cold mill shows the accuracy and the applicability of the proposed identified model.

  • PDF

Linear Modeling and Decoupling Control of Tandem Cold Rolling Mill (연속 냉간압연 시스템의 선형모델 유도와 비간섭 제어기 설계)

  • 박규은;이관호;이준화
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.39-39
    • /
    • 2000
  • In this paper, a decoupler of tandem cold rolling mill is designed. Before designing the decoupler, this paper improved conventional linear model by considering friction and yield stress of rolling strip. In a stand, the decoupler let an output be controlled by an input. And even if states of other stands should be changed, current stand takes no interference from those changes. In addition, with the same method, a feedforward controller is designed for an input strip thickness error. Finally, performance of controllers above is shown with nonlinear simulation.

  • PDF

Flatness Control System of the Hot Strip by Using Tension Profile between Stands (스탠드간 장력프로파일을 이용한 열연판 평탄도 제어시스템)

  • 홍완기;이준정
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.27-36
    • /
    • 1999
  • To have high flatness quality of hot rolled strip in the hot strip finishing mill train, a new inter-stand tension profile measuring device of segmented looper roll type(coined as Flatness Sensing Inter-stand Looper, FlatSIL) and a new flatness control system have been developed in this study. The device measures the strip tension profile across the strip width and informs the strip wave pattern to new flatness control system where work roll bending mode to relieve the strip wave is determined. The existing automatic shape control system which uses laser type shape-meter installed at the outlet of the last finishing mill stand strip tension between down coiler and last finishig mill since the latent wave concealed by the strip tension between down coiler and last finishing mill stand cannot be measured by the laser distance-meter. Thus the existing shape control system is not able to control the flatness through the full strip length. The new flatness control system, however, works for full strip length during strip rolling as far as the tension profile measuring device and work roll bender are on. With the new flatness control system, work roll bender is automatically controller to minimize the latent wave of the running strip and the flatness quality as well as strip travelling stability has been noticeably improved from strip head through body to tail.

  • PDF

The Tension Control by using CDM of the Full Stand Hot Finishing Mill

  • Lee, Dong-Wook;Ahn, Byoung-Joon;Kim, Young-Ho;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.67.1-67
    • /
    • 2002
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists on mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the hot strip finishing mill to control the tension of the strip and suggest a cross control method of full-stand hot strip finishing mill. The cross control is a very simple method that allows non-interacting control.

  • PDF

Improvement of Edge Drop in Cold Rolled Steel by Tapered Work Roll in Tandem Cold Mill (탠덤압연설비에서 테이퍼롤 채용에 의한 냉연강판 에지드롭 개선)

  • 한석영;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.34-43
    • /
    • 1994
  • In order to improve thickness profile of cold rolled steel strip, a computer simulation and actual cold rolling experiments on a 4-high tandem cold mill were carried out. In this study, tapered barrel end at top work roll and incurved barrel body at bottom work roll were examined for reducing edge drop and threading of stripe. Also, the most effective stand of tandem cold mill and magnitude of optimal taper crown at several stand were investigated under a typical rolling condition. From actual rolling experiments, it was verified that thickness deviation over strip width could be improved up to 1.06% by applying tapered and incurved work roll only at the second and up to 0.89% by applying them at both the second and the third stand.