• 제목/요약/키워드: Milking Center Wastewater

검색결과 2건 처리시간 0.017초

착유시스템 유형별 세척수의 발생량과 특성 (Estimation of Influence of Milking System Type on Milking Center Effluent Amount and its Characteristics)

  • 최동윤;곽정훈;박치호;정광화;김재환;유용희;정만순;한창배;최홍림
    • 한국축산시설환경학회지
    • /
    • 제14권3호
    • /
    • pp.149-158
    • /
    • 2008
  • 본 시험은 젖소농가에서 보유하고 있는 여러가지 형태의 착유시스템에 대하여 계절별 세척수의 발생량과 이화학적 특성을 알아보고자 바켓식, 파이프라인식, 텐덤식, 헤링본식 등 착유시스템 유형별로 각각 3농가를 선정하여 계절별로 조사를 실시하였으며, 그 결과는 다음과 같다. 1. 착유시스템 유형별 세척수 발생량은 텐덤식과 헤링본식에서 많았으며 바켓식이 적었다 (P<0.05). 2. 착유작업별 세척수 발생량은 착유기 세척에 가장 많은 량의 세척수를 사용하였으며 여름철의 경우 텐덤식 $398.8{\ell}$, 헤링본식 $407.7{\ell}$가 다른 착유시스템보다 많은 세척수를 사용하였다 (p<0.05). 3. 착유과정에서 발생하는 세척수 발생량을 조사한 결과, 평균 $15.4{\ell}$/두였으며, 계절별로는 여름이 $16.4{\ell}$로 가장 많은 세척수가 발생되었다. 4. 착유과정에서 발생하는 세척수의 $BOD_5$는 착유실 세척시 발생하는 세척수가 $906.4mg/\ell$로 가장 높았으며, 유두 세척시 가장 낮은 $212.4mg/\ell$로 나타났다. COD, SS 등도 착유실 바닥세척시 가장 높은 경향을 보였다. 5. 세척수의 이화학적 특성은 pH는 $7.3{\sim}8.2$의 범위로 착유작업 단계에 따라 차이를 나타내었으며, 착유작업 후 착유실 외부로 흘러나오는 배출수의 $BOD_5$, COD, SS, T-N, T-P는 각각 731.2, 479.0, 751.6, 79.1, $14.7mg/\ell$였다. 이상의 시험결과를 종합해 보면 착유시스템 유형별 세척수 발생량은 바켓식, 파이프 라인식, 텐덤식 및 헤링본식이 각각 143.9, 487.9, 914.0, $856.7{\ell}$로 조사되었으며, 착유과정에서 발생하는 세척수량은 착유우 두당 $15.4{\ell}$로 착유시스템 유형 및 착유우 사육두수에 따라 낙농가도 농가실정에 맞는 세척수 처리시설 및 용량을 확보해야 할 것으로 판단된다.

  • PDF

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.