• Title/Summary/Keyword: Milk components

Search Result 242, Processing Time 0.028 seconds

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF

Effects of Boostin-250 Supplementation on Milk Production and Health of Dairy Cows (재조합 Bovine Somatotropin 250 mg 제제의 투여가 젖소의 산유량 및 건강에 미치는 영향)

  • Kim, Yo-Han;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.29 no.3
    • /
    • pp.213-219
    • /
    • 2012
  • The recombinant bovine somatotropin (rbST) has been used for increasing milk production of dairy cows without adverse health effects. This study was conducted to compare effects of supplementation with $Boostin^{(R)}$-250 containing 250 mg of rbST on milk production with those of $Posilac^{(R)}$ and $Boostin^{(R)}$-S. And safety of rbST supplementation on target animals was also observed. Each twenty-five lactating dairy cows were assigned randomly to one of four groups. $Boostin^{(R)}$-250 and vehicle (control) were administered weekly. $Boostin^{(R)}$-S and $Posilac^{(R)}$ were administered two week intervals. Milk yield, milk components, milk somatic cell count, health status, and body condition score of cows were examined. Supplementation with $Posilac^{(R)}$, $Boostin^{(R)}$-S, and $Boostin^{(R)}$-250 induced more milk yield than control group by 2.9 kg/day (12.3%), 4.2 kg/day (17.9%), and 4.1 kg/day (17.4%), respectively. There was a significant difference in milk yield among three rbST treatment groups and control group (${\alpha}$ = 0.05). The rbST supplementation did not increase the incidence of clinical mastitis and milk somatic cell counts. Supplementation with rbST did not significantly affect milk components (milk fat, protein, and solid not fat). The rbST supplementation of the dairy cows after peak milk yield did not cause negative effect on BCS. However, some cows less than 100 days in milking had decreased BCSs after rbST supplementation. In conclusion, milk production in 250 mg of rbST administered cows every week was similar to that of 500 mg of rbST administered cows every 2 weeks. And supplementation of 250 mg of rbST every week could reduce metabolic stress in cows.

Effects of Mastitis on Buffalo Milk Quality

  • Tripaldi, C.;Palocci, G.;Miarelli, M.;Catta, M.;Orlandini, S.;Amatiste, S.;Di Bernardini, R.;Catillo, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1319-1324
    • /
    • 2010
  • The objectives of this study were to compare the effectiveness of different indicators of mammary inflammation in buffalo and to evaluate the association of the indicators with buffalo milk yield, composition, and rennet coagulation properties. This study was carried out at four buffalo farms in central Italy using a total of 50 lactating buffalo. Milk from each buffalo was tested at the beginning, middle, and end of lactation. To evaluate the relationship between mastitis markers and milk components, three classes were defined for each of the following markers: total somatic cell count (TSCC), differential somatic cell count (DSCC), and bacteriological results The regression coefficient for the reference method and the alternative method of determining TSCC was 0.81, indicating that the method routinely used to analyze buffalo milk consistently underestimated actual TSCC. The milk samples positive for udder-specific bacteria also had higher TSCC values than the samples that were negative for bacteria ($872{\times}10^3$/ml vs. $191{\times}10^3$/ml). In samples that were positive for udder-specific bacteria, polymorphonuclear leukocytes (PMN) made up greater than 50% of the cells. Moreover, only 1% of the samples in the lowest TSCC class were positive for bacteria. The correlation between TSCC and PMN was stronger (0.70), and PMN values in buffalo milk increased significantly when the TSCC class changed from low (38%) to medium and high (56% and 64%). Milk yield was negatively related to TSCC. Significant changes in lactose (4.87%, 4.80% and 4.64%) and chloride content (0.650 mg/ml, 0.862 mg/ml and 0.882 mg/ml) were also observed with increasing TSCC values. Higher TSCC was associated with impaired rennet coagulation properties: the clotting time increased, while the curd firming time ($p{\leq}0.05$) and firmness decreased. We concluded that in buffalo as in dairy cows, TSCC is a valid indicator of udder inflammation; we also confirmed that a value of $ 200{\times}10^3 cells/ml should be used as the threshold value for early identification of an animal affected by subclinical mastitis. In addition to its association with significantly decreased milk yield, a TSCC value above this threshold value was associated with changes in milk composition and coagulating properties.

Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

  • Vafa, Toktam S.;Naserian, Abbas A.;Moussavi, Ali R. Heravi;Valizadeh, Reza;Mesgaran, Mohsen Danesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.311-319
    • /
    • 2012
  • This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows ($42{\pm}12$ DIM, $40{\pm}6kg$ daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double $4{\times}4$ Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova;Viktoria B. Leibova;Olga V. Tulinova;Elena A. Romanova;Artem P. Dysin;Natalia V. Dementieva;Anastasiia I. Azovtseva;Sergey E. Sedykh
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.965-981
    • /
    • 2024
  • Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

Microbiological Risk Assessment for Milk and Dairy Products in Korea (우유 및 유제품의 안전성 평가를 위한 미생물학적 위해요소의 위해평가)

  • Kim, Hyoun-Wook;Han, Gi-Sung;Park, Beom-Young;Jeong, Seok-Geun;Kim, Hyeon-Shup;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-73
    • /
    • 2011
  • Food borne pathogens are a growing concern for human health and food safety throughout the world. Milk and dairy products are commonly associated with spoilage or contamination from a wide variety of physical, microbial, and chemical hazardous. Microbiological risk analysis consists of three components: risk assessment, risk management, and risk communication, and overall objective of this process is ultimately public health protection. The microbiological risk assessment is useful tool to evaluate food safety as it is based on a scientific approach. In addition risk assessment process includes quantitative estimation of the probability of occurrence of microbial hazards to evaluate more accurate human exposure. The aim of this study is to review the microbiological risk assessment on the prevalence of bacterial foodborne pathogens in milk and dairy products.

  • PDF

Effects of Different Roughage to Concentrate Ratios on the Changes of Productivity and Metabolic Profiles in Milk of Dairy Cows (조사료와 농후사료의 급여 비율이 착유유의 우유생산성과 대사산물에 미치는 영향)

  • Eom, Jun-Sik;Lee, Shin-Ja;Lee, Su-Kyoung;Lee, Yae-Jun;Kim, Hyun-Sang;Choi, You-Young;Ki, Kwang-Seok;Jeong, Ha-Yeon;Kim, Eun-Tae;Lee, Sang-Suk;Jeong, Chang-Dae;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.147-160
    • /
    • 2019
  • This study was conducted to evaluate roughage to concentrate ratio on the changes of productivity and metabolic profiling in milk. Six lactating Holstein cows were divided into two groups, T1 group was fed low-concentrate diet (Italian ryegrass to concentrate ratio = 8:2) and T2 group was fed high-concentrate diet (Italian ryegrass to concentrate ratio = 2:8). Milk samples were collected and its components and metabolites were analyzed by 1H-NMR (Nuclear magnetic resonance). The result of milk components such as milk fat, milk protein, solids-not-fat, lactose and somatic cell count were not significantly different between two groups. In carbohydrate metabolites, trehalose and xylose were significantly higher (P<0.05) in T1 group, however lactose was not significantly different between two groups. In amino acid metabolites, glycine was the highest concentration however, there was no significant difference observed between two groups. Urea and methionine were significantly higher (P<0.05) in the T2 group. In lipid metabolites, carnitine, choline and O-acetylcarnitine there were no significant difference observed between the two groups. In benzoic acid metabolites, tartrate was significantly higher (P<0.05) in T2 group. In organic acid metabolites, acetate was significantly higher (P<0.05) in T1 group and fumarate was significantly higher (P<0.05) in T2 group. In the other metabolites, 3-methylxanthine was only significantly higher (P<0.05) in T2 group and riboflavin was only significantly higher (P<0.05) in T1 group. As a result, milk components were not significantly different between two groups. However, metabolites concentration in the milk was significantly different depends on roughage to concentrate ratio.

Quality Attributes of Bread with Soybean Milk Residue-Wheat Flour (비지가루 첨가 식빵의 품질 특성)

  • 신두호;이연화
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.314-320
    • /
    • 2002
  • When the soybean milk residue flour were added to the respective wheat flour at level of 5%, 10% and 15% the possibility of bread making were studied. Vital gluten was added to the soybean milk residue portion of a 10% composite flour at levels of 3%, 6% and 9% to improve bread quality. And test was baking properties of soybean milk residue composite flour and sensory evaluation of composite breads. Major components of soybean milk residue flour were crude protein, 22.0%; crude lipid, 13.2%; carbohydrate, 54.3%; and dietary fiber, 27.2%. When 5%, 10% and 15% soybean milk residue flour was blended with wheat flour, water absorption, development time and bread weight were increased, and volume of dough and loaf was decreased. But improved bread-making properties by adding gluten. Color of crumb got darker as the percentage of soybean milk residue flour increased, got brighter when gluten was added. Texture of bread increased in chewiness and hardness as the percentage soybean milk residue flour increased but not different in cohesiveness. The use of vital gluten showed influence to springiness, chewiness and hardness. The sensory evaluation showed that 5% soybean milk residue-wheat bread was similar to bread made from wheat flour in overall acceptability. And the bread made by miting gluten were better than 10% soybean milk residue-wheat bread in overall acceptability.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Lactation Persistency as a Component Trait of the Selection Index and Increase in Reliability by Using Single Nucleotide Polymorphism in Net Merit Defined as the First Five Lactation Milk Yields and Herd Life

  • Togashi, K.;Hagiya, K.;Osawa, T.;Nakanishi, T.;Yamazaki, T.;Nagamine, Y.;Lin, C.Y.;Matsumoto, S.;Aihara, M.;Hayasaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1073-1082
    • /
    • 2012
  • We first sought to clarify the effects of discounted rate, survival rate, and lactation persistency as a component trait of the selection index on net merit, defined as the first five lactation milks and herd life (HL) weighted by 1 and 0.389 (currently used in Japan), respectively, in units of genetic standard deviation. Survival rate increased the relative economic importance of later lactation traits and the first five lactation milk yields during the first 120 months from the start of the breeding scheme. In contrast, reliabilities of the estimated breeding value (EBV) in later lactation traits are lower than those of earlier lactation traits. We then sought to clarify the effects of applying single nucleotide polymorphism (SNP) on net merit to improve the reliability of EBV of later lactation traits to maximize their increased economic importance due to increase in survival rate. Net merit, selection accuracy, and HL increased by adding lactation persistency to the selection index whose component traits were only milk yields. Lactation persistency of the second and (especially) third parities contributed to increasing HL while maintaining the first five lactation milk yields compared with the selection index whose only component traits were milk yields. A selection index comprising the first three lactation milk yields and persistency accounted for 99.4% of net merit derived from a selection index whose components were identical to those for net merit. We consider that the selection index comprising the first three lactation milk yields and persistency is a practical method for increasing lifetime milk yield in the absence of data regarding HL. Applying SNP to the second- and third-lactation traits and HL increased net merit and HL by maximizing the increased economic importance of later lactation traits, reducing the effect of first-lactation milk yield on HL (genetic correlation ($r_G$) = -0.006), and by augmenting the effects of the second- and third-lactation milk yields on HL ($r_G$ = 0.118 and 0.257, respectively).