• Title/Summary/Keyword: Milk Urea

Search Result 212, Processing Time 0.019 seconds

Effect of Level of Crude Protein and Use of Cottonseed Meal in Diets Containing Cassava Chips and Rice Straw for Lactating Dairy Cows

  • Promkot, C.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.502-511
    • /
    • 2005
  • The effects of different levels of crude protein (CP) and cottonseed meal replacing for soybean meal in cassava chips and rice straw-based diets for mid-lactating cows (100-150 day in milk [DIM]), were studied using 32 multiparous Holstein Fresian crossbred dairy cows. Diets containing 10.5, 12.5, 13.7, 14.4% CP of the rations and 0, 12.1, 14.9, 17.8% cottonseed meal were fed to cows for 60 days. Thirty two cows were randomly divided into four dietary treatments using a Randomized complete block design. Four dietary treatments were offered in the form of total mixed ration (TMR) with concentrate to roughage (chopped rice straw) at 60:40 and offered ad libitum. Dry matter (DM) and neutral detergent fiber (NDF) intakes tended to linearly increase with increasing dietary CP levels. Intakes and digestibility of crude protein increased linearly with increasing dietary CP level (p<0.01). Crude protein digestibility of the 10.5% CP diet was lower (p<0.05) than that in diets with higher levels of CP, while there were no significant differences among the other three levels of CP (12.5, 13.7 and 14.4%). Daily milk yield tended to increase with increased CP from 10.5 to 14.4%. Income over feed in terms of US$/kg of milk increased with increased CP from 10.5 to 13.7% and decreased when the CP level was higher than 13.7% (quadratic effect p<0.09). Milk composition was not significantly affected by increasing level of CP, however there were relatively high contents of protein and fat among treatments. The proportion of milk-urea N (MUN), ammonia-N ($NH_3$-N) and bloodurea N (BUN) were closely correlated and increased linearly with increasing CP levels (p<0.01). Balanced diet was found in diet containing 12.5 and 13.7% CP of the rations when BUN and MUN were used as indicators of the protein to energy ratio in the diet. Conclusions can be made that increasing dietary CP levels from 10.5 to 13.7% using cottonseed meal as the main source to completely replace soybean meal was beneficial to cows consuming rice straw and cassava chips based-diets. Increasing the CP level above 13.7% of total ration did not additionally improve milk yield and composition or net income.

Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows

  • Dey, Avijit;De, Partha Sarathi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW $351.6{\pm}10.6$ kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (p<0.05) increased due to supplementation of FBLM diet. The 4% fat corrected milk yield was also significantly (p<0.01) higher due to increased (p<0.05) milk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (p<0.05) lowered serum urea concentration in cows fed FBLM diet. There was a significant (p<0.05) increase intracellular reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activity in cows supplemented with condensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves.

Blood and milk metabolites of Holstein dairy cattle for the development of objective indicators of a subacute ruminal acidosis

  • Hyun Sang Kim;Jun Sik Eom;Shin Ja Lee;Youyoung Choi;Seong Uk Jo;Sang Suk Lee;Eun Tae Kim;Sung Sill Lee
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1199-1208
    • /
    • 2023
  • Objective: The purpose of this study was to perform a comparative analysis of metabolite levels in serum and milk obtained from cows fed on different concentrate to forage feed ratios. Methods: Eight lactating Holstein cows were divided into two groups: a high forage ratio diet (HF; 80% Italian ryegrass and 20% concentrate of daily intake of dry matter) group and a high concentrate diet (HC; 20% Italian ryegrass and 80% concentrate) group. Blood was collected from the jugular vein, and milk was sampled using a milking machine. Metabolite levels in serum and milk were estimated using proton nuclear magnetic resonance and subjected to qualitative and quantitative analyses performed using Chenomx 8.4. For statistical analysis, Student's t-test and multivariate analysis were performed using Metaboanalyst 4.0. Results: In the principal component analysis, a clear distinction between the two groups regarding milk metabolites while serum metabolites were shown in similar. In serum, 95 metabolites were identified, and 13 metabolites (include leucine, lactulose, glucose, betaine, etc.) showed significant differences between the two groups. In milk, 122 metabolites were identified, and 20 metabolites (include urea, carnitine, acetate, butyrate, arabinitol, etc.) showed significant differences. Conclusion: Our results show that different concentrate to forage feed ratios impact the metabolite levels in the serum and milk of lactating Holstein cows. A higher number of metabolites in milk, including those associated with milk fat synthesis and the presence of Escherichia coli in the rumen, differed between the two groups compared to that in the serum. The results of this study provide a useful insight into the metabolites associated with different concentrate to forge feed ratios in cows and may aid in the search for potential biomarkers for subacute ruminal acidosis.

Prediction of Dietary Protein-Energy Balance by Milk Urea Nitrogen and Protein Contents in Dairy Cow (젖소의 우유 중 단백질과 요소태질소 측정에 의한 사료의 에너지와 단백질 균형 상태 예측)

  • Moon, J.S.;Joo, Y.S.;Kang, H.M.;Jang, G.C.;Kim, J.M.;Lee, B.K.;Park, Y.H.;Son, C.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.573-584
    • /
    • 2002
  • Milk urea nitrogen (MUN) and Milk protein (MP) are being used as indicators of the protein-energy balance and for actual farm feeding practices. The purpose of this study was to investigate the MUN and MP concentrations of individual cows and bulk tank milk to evaluate the dietary protein-energy balance from lactating Holstein cows. Mean MUN and MP concentrations in the milk samples obtained from 132,636 cows of 4,856 herd during Jan. 1999 to Dec. 2001 were 16.2 5.2mg/dl and 3.30 0.35%, respectively. The highest values were found during summer and lowest valued during winter in MUN. But, the average contents of MP were the highest during winter and the lowest during summer. In order to evaluate protein-energy balance for feeding, we set the level of recommended MP range of 2.90${\sim}$3.29% in early lactation considering a negative energy balance. The recommended level of MP in mid-lactation and late lactation were set as 3.10${\sim}$3.49%, and 3.30${\sim}$3.69%, respectively. Recommended MUN range of 12${\sim}$18 mg/dl was determined through the whole lactation period. Individual cows milk were analyzed by the 9 types based on this levels of MP and MUN in this study. Among the total cows investigated, 26.8%, 25.8%, and 22.2% have shown the recommended criteria of MP and MUN values, respectively. Also, of total herds surveyed, 11.6% had MUN values lower than 12.0 mg/dl and 32.9% had values higher than 18.0 mg/dl and 44.5% of total herd have not met with the recommended criteria of MP values in bulk tank milk. In case of MP, out of the total herd surveyed, 26.0% had MP values lower than 3.10% and 24.0% had values higher than 3.30% and 50.0% had MP values outside the recommended interval (3.1${\sim}$3.3%). This study has indicates that many dairy farms are under improper feeding management practice of the dietary protein-energy balance.

Effect of Supplemental Fish Meal on Milk Yield and Milk Composition of Holstein Cows during Early Lactation

  • Adachi, N.;Suzuki, K.;Kasai, K.;Hiroki, M.;Kume, S.;Nonaka, I.;Abe, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.329-333
    • /
    • 2000
  • Data of 15 multiparous Holstein cows kept at Ibaraki Prefectural Animal Experiment Station were collected from 10 weeks prepartum to 20 weeks postpartum. Cows were assigned randomly to a soybean meal (S8M) diet or a fish meal (FM) diet from 4 weeks before expected calving date to 20 weeks postpartum. Each diet was formulated to contain similar amounts of CP, ADF, and NDF. In the FM diet, 2.5 and 5% of fish meal were supplemented as total mixed rations in prepartum and postpartum periods, respectively. Compared to the SBM diet, undegraded intake protein (UIP) and Met were higher in the FM diet, but Lys was low. Body weight and dry matter intake were not affected by supplemental FM, and dry matter intake increased by 6 weeks postpartum and maintained constant after 7 weeks postpartum. Cows in the FM diet remained high milk production during the experimental period, but milk yield in the SBM diet decreased gradually after 6 weeks postpartum. Supplemental FM increased milk yield and protein yield from 10 to 20 weeks postpartum when FM intake was 1.19 kg/d, although milk protein was not improved. There were no significance differences in fat content and fat yield between FM and SBM diets. Supplemental FM had no effect on plasma glucose and urea-N at parturition and 7 weeks postpartum. Thus, the increased milk and protein yield may be due to the combination of carryover effect of supplemental UIP or Met in FM from 4 weeks prepartum to 10 weeks postpartum and direct effect of supplemental FM.

Ensiled Banana Wastes with Molasses or Whey for Lactating Buffaloes during Early Lactation

  • Khattab, H.M.;Kholif, A.M.;EI-Alamy, H.A.;Salem, F.A.;EI-Shewy, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.619-624
    • /
    • 2000
  • Low-quality roughages [banana wastes (B), wheat straw (WS) and dried broiler litter (BL)] were ensiled using either sweet whey (W) or diluted molasses (M) as rehydration media to study their effects on milk yield, milk composition and some parameters of blood plasma. The feeding trial involved 25 lactating buffaloes in five groups (five animals each). Buffaloes as control animals received diets of concentrate feed mixture, rice straw and wastelages (70:30:00). In the other 4 treatments, the wastelages replaced 50% of rice straw in the control diets. The wastelages were BL:B:M(3:2:10) (T1), BL:WS:M (3:2:10) (T2), BL:B:W (3:2:10) (T3) and BL:WS:W (3:2:10) (T4) on a fresh matter basis, during the 1st 17 weeks of lactation period. Results indicated that feeding lactating buffaloes on wastelages resulted in slightly higher (p>0.05) milk yield, 4% fat-corrected-milk yield and feed efficiency, and slightly lowered (p>0.05) contents of milk total solids, fat and protein. Wastelages, especially BL-B-M, increased (p<0.05) milk non-protein-nitrogen and ash contents and plasma urea, GOT and GPT. The results demonstrate that banana plant wastes with some additives in silage form may be good untraditional roughage for lactating buffaloes without any adverse effect on milk production.

Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins

  • Ki, K.S.;Khan, M.A.;Lee, W.S.;Lee, H.J.;Kim, S.B.;Yang, S.H.;Baek, K.S.;Kim, J.G.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.516-519
    • /
    • 2009
  • This study was conducted to investigate the effects of replacing whole crop corn silage (WCCS) with whole crop rice silage (WCRS) in the total mixed ration (TMR) on nutrient intake, milk yield and its composition in Holstein cows. The Chucheong rice variety (Oryza sativa L. Japonica) and corn (Pioneer 32 P75) were harvested at yellow-ripe stage and were ensiled in round bales and in trench silos, respectively. Two TMR containing either WCCS or WCRS were prepared. These diets were randomly assigned to 16 midlactating Holstein cows (8 cows per treatment) and were fed for 120 days. The first 20 days were used for dietary adaptation and for the next 100 days daily feed intake, milk yield and its composition were recorded. The pH, lactic acid, NDF, ADF, CP, Ca and P contents were similar in WCRS and WCCS. The DM, ash and EE contents of WCRS were greater compared with WCCS. Nutrient (DM, NDF, TDN and CP) intakes were similar in cows fed WCCS- and WCRS-based TMR. Daily and 4% fat corrected milk yield were not affected by the treatments. Milk composition (percent milk fat, protein, lactose and total solids) was similar in cows fed either WCCS- or WCRSbased TMR. The concentration of milk urea N was greater in cows fed WCRS-based TMR than those fed WCCS-based TMR. In conclusion, round-baled WCRS can replace WCCS in the diet of mid- to late-lactating Holsteins without any deleterious effects on feed consumption, milk yield and its composition. The present findings raise the possibility that WCRS can be used as an alternative roughage source in the diets of dairy cows in countries with surplus rice production.

Application of Cornell Net Carbohydrate and Protein System to Lactating Cows in Taiwan

  • Chiou, Peter Wen-Shyg;Chuang, Chi-Hao;Yu, Bi;Hwang, Sen-Yuan;Chen, Chao-Ren
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.857-864
    • /
    • 2006
  • The aim of this study was to apply the Cornell net carbohydrate and protein system (CNCPS) in subtropical Taiwan. This was done by means of 3 trials, viz, in situ, lactation and metabolic trials, the latter using the urinary purine derivatives (UPD) to estimate the ruminal microbial yield. Dietary treatments were formulated according to different nutrient requirement systems including, (1) a control NRC78 group on NRC (1978), (2) a NRC88 group on NRC (1988), and (3) a CNCPS group on Cornell Net carbohydrate and protein system model. Results from the lactation trial showed that DM intake (DMI) was higher (p<0.05) in the NRC78 than the other treatment groups. The treatments did not significantly influence milk yield, but milk yield after covariance adjustment for DMI was higher in the CNCPS group (p<0.05). The FCM, milk fat content and yield were greater in both the NRC78 and the NRC88 group over the CNCPS group (p<0.05). The treatments did not significantly influence the DMI adjusted FCM. The solid-non-fat and milk protein contents were higher in the CNCPS group (p<0.05) with or without DMI covariance adjustment. Lactating efficiency was higher in the CNCPS group (p<0.05) compared to the other groups. The significantly lowest milk urea-N (MUN) with better protein utilization efficiency in the CNCPS group (p<0.05) suggested that less N would be excreted into the environment. Cows in the CNCPS group excreted significantly more and the NRC88 group significantly less urinary purine derivatives (UPD) implying that more ruminal microbial protein was synthesized in the CNCPS over the NRC88 group. The CNCPS could become the most useful tool in predicting the trends in milk yield, microbial yield and MUN.

Effect of Types of Milking Instrument and Season on Milk Composition in Holstein-Friesian lactating Cows (착유시스템 및 계절이 홀스타인 착유우의 유성분에 미치는 영향)

  • Nam, In-Sik;Heo, Byong-Moo;Park, Ho-Kyung;Min, Tae-Hong;Son, Yong-Suk;Park, Seong-Min;Kwon, Eung-Gi;Chang, Kyeong-Man
    • Journal of Animal Environmental Science
    • /
    • v.20 no.3
    • /
    • pp.97-104
    • /
    • 2014
  • This study was conducted to examine the effect of different types of milking instrument and season on milk composition (fat, protein, non-fat milk solids, milk urea nitrogen and somatic cell count) on Holstein-Friesian lactating cows. Raw milk samples were collected from 20 automatic milking system (AMS) installed dairy farms and 85 conventional milking system (CMS) installed dairy farms. Milk fat, protein, NFMS and MUN contents did not changed between AMS and CMS and different seasons. On the other hand, the average SCC in AMS was $239{\times}10^3cells/mL$ which was lower than in CMS ($373{\times}10^3cells/mL$, (p<0.05). In conclusion, present results indicated that SCC in milk might be influenced by AMS. However, this area needed more study to confirm the reason of reducing SCC content from AMS.

A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation

  • Lim, Dong-Hyun;Mayakrishnan, Vijayakumar;Lee, Hyun-Jeong;Ki, Kwang-Seok;Kim, Tae-Il;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.565-576
    • /
    • 2020
  • Recently, Jersey cattle was introduced and produced by embryo transfer to Korea. This study was conducted to investigate the differences of milk compositions between Jersey and Holstein cows and the relationship between days in milk (DIM) and milk compositions during early lactation. Data were collected from twelve lactating cows from Department of Animal Resources Development at National Institute of Animal Science. Cows in parity 1 were used, and calved at spring from April to March of 2017. All cows were housed in two sections within a free-stall barn, which divided into six from each breed, and received a basal total mixed ration. Milk samples of each cow were collected at 3 DIM and 30 DIM for analyzing the milk compositions, including fatty acids (FA), amino acids and minerals. Total solids, citrate, and milk urea nitrogen level were differed between the breeds (p < 0.05). As DIM went from 3 to 30, milk protein, total solids, and somatic cell count decreased (p < 0.05), but lactose increased in all breed milk (p < 0.05). Citrate and free fatty acid (FFA) elevated in Jersey milk (p < 0.05), whereas reduced in Holstein milk (p < 0.05). Proportions of some individual FA varied from the breeds. Myristic (C14:0), palmitic (C16:0), and arachidonic acid (C20:4) in milk from all cows were higher at 3 DIM than at 30 DIM (p < 0.05). Also, stearic (C18:0) and oleic acid (C18:1) were lower at 3 DIM than at 30 DIM (p < 0.05), and the C18:1 to C18:0 ratio was significantly differed in DIM × breed interactions (p < 0.05). The contents of the individual amino acids did not differ from the breeds. Calcium, phosphorous, magnesium, and zinc (Zn) contents was significantly increased in Holstein milk than Jersey milk at 3 DIM. Also, K and Zn concentrations were higher in Holstein milk than in Jersey milk at 30 DIM (p < 0.05). It was concluded that Jersey cows would produce more effective milk in processing dairy products and more proper energy status compared with Holstein cows in early lactation under the same environmental and nutritional conditions.