• Title/Summary/Keyword: Milk Diets

Search Result 333, Processing Time 0.032 seconds

Altering undigested neutral detergent fiber through additives applied in corn, whole barley crop, and alfalfa silages, and its effect on performance of lactating Holstein dairy cows

  • Hosseini, Seyed Mohsen;Mesgaran, Mohsen Danesh;Vakili, Ali Reza;Naserian, Abbas Ali;Khafipour, Ehsan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • Objective: We hypothesized that silage additives may alter the undigested neutral detergent fiber (uNDF) content through ensiling. Therefore, urea and formic acid were applied to corn, whole barley crop (WBC) and alfalfa to change uNDF content of the ensiled forages. Methods: Six experimental diets at two groups of high uNDF (untreated corn and alfalfa silages [CSAS] and untreated whole barley and alfalfa silages [BSAS]) and low uNDF (urea-treated corn silage+untreated alfalfa silage [$CS_UAS$], urea-treated whole barley silage+untreated alfalfa silage [$BS_UAS$], untreated corn silage+formic acid-treated alfalfa silage [$CSAS_F$], and untreated whole barley silage+formic acid-treated alfalfa silage [$BSAS_F$]), were allocated to thirty-six multiparous lactating Holstein dairy cows. Results: The untreated silages were higher in uNDF than additive treated silages, but the uNDF concentrations among silages were variable (corn silage0.05). Milk yield tended to increase in the cows fed high uNDF diets than those fed low uNDF (p = 0.10). The cows fed diet based on urea-treated corn silage had higher milk yield than those fed other silages (p = 0.05). The substitution of corn silage with the WBC silage tended to decrease milk production (p = 0.07). Changing the physical source of NDF supply and the uNDF content from the corn silage to the WBC silage caused a significant increase in ruminal $NH_3-N$ concentration, milk urea-N and fat yield (p<0.05). The cows fed diets based on WBC silage experienced greater rumination time than the cows fed corn silage (p<0.05). Conclusion: Administering additives to silages to reduce uNDF may improve the performance of Holstein dairy cows.

Effect of Total Mixed Ration Particle Size on Rumen pH, Chewing Activity and Performance in Dairy Cows

  • Schroeder, M.M.;Soita, H.W.;Christensen, D.A.;Khorasani, G.R.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1755-1762
    • /
    • 2003
  • Two experiments were conducted to determine effects of particle size in total mixed ration (TMR) on performance of lactating cows. Three rumen cannulated Holstein cows were used in a $3{\times}3$ Latin square design for the metabolic experiment. The particle size of the diets was determined using the Penn State Particle Size Separator (PSPSS) and weighing the proportion of sample remaining on the top screen (19 mm diameter). The 3 treatments were short, medium or long diets (4.9, 24.2 and 27.8% of sample remaining on the top screen of the PSPSS, respectively). Nine farms in the Edmonton area were surveyed and the farms were placed into groups based on the particle size of the ration fed. The groups were short ${\leq}6%$, medium 7-12% and long ${\geq}13%$ of sample weight remaining on the top screen of the PSPSS. Dry matter intake was greater (p=0.07) for the medium diet than the long diet in the metabolic study and resulted in a higher (p=0.07) efficiency of milk production. On the commercial farms, a significantly (p=0.002) lower milk fat percentage was observed for the long diet compared to the short diet. The results of these studies confirm that forage particle size influences milk composition and milk fat was negatively correlated to TMR particle size.

Effects of Molasses at Different Levels in Concentrate Supplement on Milk Yield of Dairy Cows Grazing Setaria Grass (Setaria Sphacelata) Pasture in Fiji

  • Eroni, V. Tamani;Aregheore, E.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1455-1463
    • /
    • 2006
  • Effects of different levels of molasses in a concentrate supplement on milk yield of cows grazing Setaria grass pastures were investigated. Thirty Friesian cows, 6-7 years old with mean pre-experimental body weight of $428{\pm}6.5$ kg, in early stage of lactation were randomly allotted to five dietary treatments in a completely randomized design experiment that lasted for 126 days. Experimental dietary treatments were forage alone and forage/concentrate mixtures with molasses included at 0, 5, 10 or 15% levels designated as $T_1$, $T_2$, $T_3$, $T_4$ and $T_5$, respectively. The parameters studied were voluntary dry matter (DM) intake, average daily live weight change (LWC), milk yield, body condition score (BCS) and apparent nutrient digestibility coefficients. The DM and energy contents of Setaria grass were low compared to the concentrate diets. Fibre fractions-NDF, ADF, ADL, hemicellulose and cellulose; and gross energy were higher in concentrate mixtures than in the forage. Total DM intake (forage+concentrate mixtures) was significantly higher (p<0.001) in cows on the concentrate mixtures. LWC was not significantly different (p>0.05) between the cows. Average milk yields were significantly different (p<0.05) between cows. Fat corrected milk (FCM) was similar among cows in the treatments. BCS was better (p<0.001) in cows on concentrate mixtures. Digestibilities of DM, CP, NDF, ADF, ADL, OM, and energy were significantly higher (p<0.001) in cows on $T_2$, $T_3$, $T_4$ and $T_5$ than in those on $T_1$. There were no significant differences in the digestibility of DM, CP, NDF, ADF and ADL (p>0.001) in cows on concentrate mixtures. This study therefore demonstrated that lactating dairy cows in Fiji need a level of readily fermented energy source such as molasses in their diets; however, a level above 10% is not nutritionally suitable for lactating dairy cows. Based on data on production parameters-milk yield, fat corrected milk, body condition score and apparent nutrient digestibility coefficients-molasses levels that range between 5-10% are recommended, however, 10% is the best and therefore recommended for inclusion in the concentrate mixture of lactating dairy cows on a basal diet of Setaria sphacelata in Fiji.

Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis

  • Agung Irawan;Ahmad Sofyan;Teguh Wahyono;Muhammad Ainsyar Harahap;Andi Febrisiantosa;Awistaros Angger Sakti;Hendra Herdian;Anuraga Jayanegara
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1666-1684
    • /
    • 2023
  • Objective: Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. Methods: A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. Results: In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. Conclusion: RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.

Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows

  • Si, Bingwen;Tao, Hui;Zhang, Xiaoli;Guo, Jiangpeng;Cui, Kai;Tu, Yan;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1259-1266
    • /
    • 2018
  • Objective: This study was carried out to investigate the possible application of Broussonetia papyrifera (B. papyrifera) silage as a functional feeding stuff in dairy cattle. Methods: Seventy-two Holstein cows were divided into four groups randomly and allocated to 6 pens with 3 individuals in each group and fed the original total mixed ratio (TMR) in the dairy farm or the new TMR with 5%, 10%, and 15% B. papyrifera silage, separately. Feed intake were recorded, milk and blood samples were collected, and milk composition, blood metabolites and milk fatty acids composition were measure at the end of the experiment. Results: Dry matter intake of cows decreased when they fed on diet with B. papyrifera, but no differences were observed in body condition score, milk yield, milk protein and lactose, feed efficiency and serum metabolites between groups. Both 10% or 15% of B. papyrifera silage in the diet significantly increased the immunoglobulin A (IgA) and IgG in serum, 15% of B. papyrifera silage increased the content of serum catalase, superoxide dismutase, total antioxidant capacity, and decreased the content of 8-hydroxy-2'-deoxyguanosine. Furthermore, 10% or 15% of B. papyrifera silage resulted in a significant decrease in the milk somatic cell count, and increased the polyunsaturated fatty acids content in the milk. Conclusion: The diets with 10% to 15% of B. papyrifera silage might enhance the immune and antioxidant function of dairy cows and increase the polyunstaturated fatty acid concentration in the milk.

Production responses of Holstein dairy cows when fed supplemental fat containing saturated free fatty acids: a meta-analysis

  • Hu, Wenping;Boerman, Jacquelyn P.;Aldrich, James M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1105-1116
    • /
    • 2017
  • Objective: A meta-analysis was conducted to evaluate the effects of supplemental fat containing saturated free fatty acids (FA) on milk performance of Holstein dairy cows. Methods: A database was developed from 21 studies published between 1991 and 2016 that included 502 dairy cows and a total of 29 to 30 comparisons between dietary treatment and control without fat supplementation. Only saturated free FA (>80% of total FA) was considered as the supplemental fat. Concentration of the supplemental fat was not higher than 3.5% of diet dry matter (DM). Dairy cows were offered total mixed ration, and fed individually. Statistical analysis was conducted using random- or mixed-effects models with Metafor package in R. Results: Sub-group analysis showed that there were no differences in studies between randomized block design and Latin square/crossover design for dry matter intake (DMI) and milk production responses to the supplemental fat (all response variables, $p{\geq}0.344$). The supplemental fat across all studies improved milk yield, milk fat concentration and yield, and milk protein yield by 1.684 kg/d (p<0.001), 0.095 percent unit (p = 0.003), 0.072 kg/d (p<0.001), and 0.036 kg/d (p<0.001), respectively, but tended to decrease milk protein concentration (mean difference = -0.022 percent unit; p = 0.063) while DMI (mean difference = 0.061 kg/d; p = 0.768) remained unchanged. The assessment of heterogeneity suggested that no substantial heterogeneity occurred among all studies for DMI and milk production responses to the supplemental fat (all response variables, $I^2{\leq}24.1%$; $p{\geq}0.166$). Conclusion: The effects of saturated free FA were quantitatively evaluated. Higher milk production and yields of milk fat and protein, with DMI remaining unchanged, indicated that saturated free FA, supplemented at ${\leq}3.5%$ dietary DM from commercially available fat sources, likely improved the efficiency of milk production. Nevertheless, more studies are needed to assess the variation of production responses to different saturated free FA, either C16:0 or C18:0 alone, or in combination with potentially optimal ratio, when supplemented in dairy cow diets.

Effect of increasing dietary metabolizable protein on nitrogen efficiency in Holstein dairy cows

  • Imran, Muhammad;Pasha, Talat Naseer;Shahid, Muhammad Qamer;Babar, Imran;Naveed ul Haque, Muhammad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.660-665
    • /
    • 2017
  • Objective: The objective of the study was to determine the effects of increasing levels of metabolizable protein (MP) on lactation performance and nitrogen (N) efficiencies in lactating dairy cows. Methods: Nine multiparous cows in mid lactation [$113{\pm}25$ days in milk] received three treatments in a $3{\times}3$ Latin square design with a period length of 21 days. The treatments were three diets, designed to provide similar energy and increasing supply of MP (g/d) (2,371 [low], 2,561 [medium], and 2,711 [high] with corresponding crude protein levels [%]) 15.2, 18.4, and 20.9, respectively. Results: Increasing MP supplies did not modify dry matter intake, however, it increased milk protein, fat, and lactose yield linearly. Similarly, fat corrected milk increased linearly (9.3%) due to an increase in both milk yield (5.2%) and milk fat content (7.8%). No effects were observed on milk protein and lactose contents across the treatments. Milk nitrogen efficiency (MNE) decreased from 0.26 to 0.20; whereas, the metabolic efficiency of MP decreased from 0.70 to 0.60 in low to high MP supplies, respectively. The concentration of blood urea nitrogen (BUN) increased linearly in response to increasing MP supplies. Conclusion: Increasing MP supplies resulted in increased milk protein yield; however, a higher BUN and low MNE indicated an efficient utilization of dietary protein at low MP supplies.

Meta-analysis of factors affecting milk component yields in dairy cattle

  • Lee, Junsung;Seo, Jakyeom;Lee, Se Young;Ki, Kwang Seok;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.56 no.2
    • /
    • pp.5.1-5.5
    • /
    • 2014
  • The objectives of this study were thus to identify most significant factors that determine milk component yield (MCY) using a meta-analysis and, if possible, to develop equations to predict MCY using variables that can be easily measured in the field. A literature database was constructed based on the research articles published in the Journal of Dairy Science from Oct., 2007 till May, 2010. The database consisted of a total of 442 observed means for MCY from 118 studies. The candidate factors that determine MCY were those which can be routinely measured in the field (e.g. DMI, BW, dietary forage content, chemical composition of diets). Using a simple linear regression, the best equations for predicting milk fat yield(MFY) and milk protein yield (MPY) were $MFY=0.351({\pm}0.068)+0.038({\pm}0.003)$ DMI ($R^2=0.27$), and $MPY=0.552({\pm}0.071)+0.031({\pm}0.002)DMI-0.004({\pm}0.001)$ FpDM (%, forage as a percentage of dietary DM) ($R^2=0.38$), respectively. The best equation for predicting milk fat content (%) explained only 12% of variations in milk fat content, and none of a single variable can explain more than 5% of variations in milk protein content. We concluded that among the tested variables, DMI was the only significant factor that affects MFY and both DMI and FpDM significantly affect MPY. However, predictability of linear equations was relatively low. Further studies are needed to identify other variables that can predict milk component yield more accurately.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Effect of Time of Initiating Dietary Fat Supplementation on Performance and Reproduction of Early Lactation Dairy Cows

  • Son, J.;Larson, L.L.;Grant, R.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.182-187
    • /
    • 2000
  • Forty-two Holstein cows (21 multiparous) were assigned by calving date and parity to three dietary sequences to evaluate the effect of time of initiating fat supplementation to diets on lactation and reproductive performance. The dietary sequences were: 1) control, no supplemental fat from 1 to 98 days in milk (DIM) ; 2) control diet from 1 to 28 DIM then 3% supplemental fat (calcium salts of long-chain fatty acids) from 29 to 98 DIM; or 3) 3% supplemental fat from 1 to 98 DIM. Feeding supplemental fat did not enhance mean milk and 4% fat corrected milk (FCM) yields, but efficiency of FCM production was higher for cows fed supplemental fat. Milk fat percentage was unchanged whereas milk protein percentage was depressed with fat supplementation. Feeding supplemental fat reduced DMI and energy balance but there were no differences among treatments on time to resumption of ovarian cyclicity or conception rate to first service. Concentrations of progesterone during the first two ovulatory cycles tended to be greater in the fat-supplemented groups. Feeding supplemental fat starting at either parturition or 29 DIM increased efficiency of FCM production, but did not greatly enhance reproductive performance.