• Title/Summary/Keyword: Military-Telescope

Search Result 5, Processing Time 0.026 seconds

Study on Analyzing and Correction of Dynamic Battery Alignment Error in Naval Gun Fire Control System by using Image of Boresight Telescope (포배열카메라 영상을 활용한 함포 사격통제시스템의 동적배열오차 분석 및 보정방법)

  • Kim, Eui-Jin;Suh, Tae Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.745-751
    • /
    • 2013
  • In naval gun firing, firing accuracy comes from the combination of each component's accuracy in CFCS (Command and Fire Control System) like tracking sensors and gun. Generally, battery alignment is done to correct the error between gun and tracking sensor by using boresight telescope on harbor and sea. But normally, the battery alignment can compensate only the static alignment error and ignore dynamic alignment error which is caused by own ship movement. There was no research on this dynamic alignment error until now. We propose a new way to analyze dynamic arrangement error by using image of boresight telescope. In case of the dynamic alignment error was due to time delay of own ship attitude information, we propose the way to compensate it.

Military Telescope Mirror Aluminum Re-Coating Prediction Study by Simulation (시뮬레이션을 통한 군용 망원경 미러 알루미늄 코팅 주기 예측 연구)

  • Choi, Hyo-Jun;Park, Jun-Su;Lee, Jung-Hoon;Oh, Young-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.439-447
    • /
    • 2020
  • Re-coating of the mirror is one of the important things to maintain the performance of a telescope. The metal coated on the mirror reflects light, and if the reflectance decreases, then the telescope's performance decreases, so the mirror must be periodically recoated. It is important to predict re-coating cycles for military telescopes and to develop maintenance plans not only for performance, but also for the telescope's availability for missions and the maintenance costs for long-term use. However, most similar telescopes used for astronomy research determine recoating cycles based on experience and operating conditions, and not for prediction of recoating. Therefore, this study predicts the cleaning cycles and re-coating cycles of a military telescope's mirror by using simulation. First, this study analyzed similar cases of domestic and foreign astronomy research institutes and the study also reviewed the need for re-coating and predicting re-coating cycles. Second, this study developed simulation for predicting cleaning and re-coating cycles according to data analysis and modeling. Finally, the study predicts cleaning cycles and re-coating cycles according to varying reflectance reduction (5%, 10%, 15%, 20%) and cleaning conditions (per 3 months, 6 months, 1 year and 2 years). As a result, this study suggests reference criteria to develop the planning for military telescopes and their maintenance.

The First Telescope in the Korean History I. Translation of Jeong's Report (한국사 최초의 망원경 I. 정두원(鄭斗源)의 "서양국기별장계(西洋國奇別狀啓)")

  • Ahn, Sang-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.237-266
    • /
    • 2009
  • In 1631 A.D. Jeong Duwon, an ambassador of the Joseon dynasty was sent to the Ming dynasty. There he met $Jo\tilde{a}o$ Rodrigues, a Jesuit missionary, in Dengzhou of Shandong peninsula. The missionary gave the ambassador a number of results of latest European innovations. A detailed description on this event was written in 'Jeong's official report regarding a message from an European country'(西洋國奇別狀啓), which is an important literature work to understand the event. Since the document was written in classical Chinese, we make a comprehensive translation to Korean with detailed notes. According to the report, the items that Rodrigues presented include four books written in Chinese that describe European discoveries about the world, a report on the tribute of new cannons manufactured by Portuguese in Macao, a telescope, a flintlock, a Foliot-type mechanical clock, a world atlas drawn by Matteo Ricci, an astronomical planisphere, and a sun-dial. We discuss the meaning of each item in the Korean history of science and technology. In particular, Jeong's introduction is an important event in the history of Korean astronomy, because the telescope he brought was the first one to be introduced in Korean history. Even though king Injo and his associates of the Joseon dynasty were well aware of the value as military armaments of new technologies such as telescopes, cannons, and flintlocks, they were not able to quickly adopt such technologies to defend against the military threat of Jurchen. We revisit the reason in view of the general history of science and technology of east-Asian countries in the 17th century.

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

DEVELOPMENT OF A LYMAN-α IMAGING SOLAR TELESCOPE FOR THE SATELLITE (인공위성 탑재용 자외선 태양카메라(LIST) 개발)

  • Jang, M.;Oh, H.S.;Rim, C.S.;Park, J.S.;Kim, J.S.;Son, D.;Lee, H.S.;Kim, S.J.;Lee, D.H.;Kim, S.S.;Kim, K.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.329-352
    • /
    • 2005
  • Long term observations of full-disk Lyman-o irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the $Lyman-{\alpha}$ irradiance. Previous full disk $Lyman-{\alpha}$ images of the sun have been very interesting and useful scientifically, but have been only five-minute 'snapshots' obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-o intensity. The $Lyman-{\alpha}$ Imaging Solar Telescope(LIST) can provide a unique opportunity for the study of the sun in the $Lyman-{\alpha}$ region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project And these can be utilized to build a high resolution photometric detectors for military and commercial purposes. It is also believed that we will be able to apply several acquired techniques for the development of the Korean satellite projects in the future.