• Title/Summary/Keyword: Military Unmanned Vehicle System

Search Result 110, Processing Time 0.021 seconds

Comparative legal review between national R&D projects and defence R&D programs - A study on improvement of royalty system for the promotion of aircraft industry - (국가연구개발사업 및 국방연구개발사업 간 비교법적 검토 - 항공기산업 진흥을 위한 기술료 제도 개선에 관한 연구 -)

  • Lee, Hae-Jun;Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.153-180
    • /
    • 2020
  • This study is meaningful in finding out what legal and policy issues need to be improved in order to foster the aircraft industry, which is relatively underdeveloped compared to the fact that some heavy industries, such as the automobile industry and shipbuilding industry, have achieved a high level of production and technology globally. Korea's aircraft industry has been growing at a slower pace than other industries, largely due to the country's economic growth and the lack of a market structure to properly use variables such as the level of development in related industries, aircraft technology and demand for aircraft manufacturing. While most industries are privately led by the market structure of the competition system, heavy industries such as the aircraft industry generally grow under the market structure of the incomplete competition system, because only by securing huge initial investment costs, high technology, and sufficient demand, they can maintain minimum economic feasibility. The Korean aircraft industry was focused on developing and mass-producing military aircraft focusing on military demand, but it sought to turn the tide by signing the BASA (Bileral Aviation Safety Agreement) with the U.S. A preliminary feasibility study was conducted in 2010 to develop next-generation medium-sized aircraft, but was cancelled due to differences in position with Canada's Bombardier, which is subject to the concourse, and Korea Aerospace Industries (KAI) is pushing for the production of Bombardier's Q400 license on its own. Compared to the mid-to-large sized civil aircraft that are facing difficulties in development, KAI and KARI are successfully developing technologies to unmanned aerial vehicles and civil helicopters. In addition, the unmanned aerial vehicle sector is not yet suitable for manufacturers that have an exclusive global influence, so we believe that it is necessary to pursue government-led research and development projects with a focus on the areas of commercial helicopters and unmanned aerial vehicles in order to foster the aircraft industry in the future. In addition, since military aircraft such as KT-1 and T-50 are currently being exported smoothly, and it cannot be overlooked that the biggest demand for aircraft manufacturing in the Korea is the military, it is necessary to push forward national R&D projects and defense R&D program simultaneously to enable both civilian-military development. However, there are many differences between the two projects in the way they are implemented, the department in charge and the royalty system. Through this study, we learned about the technology ownership and implementation rights of national R&D projects and defense R&D programs, as well as the royalty system. In addition, problems with the system were identified and improvement measures were derived.

Optimal Surveillance Trajectory Planning for Illegal UAV Detection for Group UAV using Particle Swarm Optimization (불법드론 탐지를 위한 PSO 기반 군집드론 최적화 정찰궤적계획)

  • Lim, WonHo;Jeong, HyoungChan;Hu, Teng;Alamgir, Alamgir;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.382-392
    • /
    • 2020
  • The use of unmanned aerial vehicle (UAV) have been regarded as a promising technique in both military and civilian applications. Nevertheless, due to the lack of relevant and regulations and laws, the misuse of illegal drones poses a serious threat to social security. In this paper, aiming at deriving the three-dimension optimal surveillance trajectories for group monitoring drones, we develop a group trajectory planner based on the particle swarm optimization and updating mechanism. Together, to evaluate the trajectories generated by proposed trajectory planner, we propose a group-objectives fitness function in accordance with energy consumption, flight risk. The simulation results validate that the group trajectories generated by proposed trajectory planner can preferentially visit important areas while obtaining low energy consumption and minimum flying risk value in various practical situations.

Design and Performance Analysis of Common data link digital modem for surveillance UAVs (정찰용 무인기를 위한 공용데이터링크 모뎀 설계 및 성능 분석)

  • Jung, Sungjin;Kim, Younggil;Lee, Daehong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.162-168
    • /
    • 2018
  • The UAV(Unmanned Aerial Vehicle) system, including the drone of a variety of fields, which has become an issue and utilized in various fields, has begun to develop in military fields and is actively developed in the commercial field. In various types of UAV systems, which have been developed recently, the communication system that is responsible for the connection between the ground control unit and the UAVs is called the data link. Especially, common data link used in military UAVs is required stability of communication to transmit surveillance and reconnaissance intelligence information and UAV's status. In this paper, the requirement for a modem was defined to secure the communication stability of the common data link used in surveillance UAVs. And, the design of the data link modem to satisfy applicable specifications was proposed. The proposed modem design was verified through the performance measurement of the implemented systems.

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

Relay Network using UAV: Survey of Physical Layer and Performance Enhancement Issue (무인항공기를 이용한 중계네트워크: 물리계층 동향분석 및 성능향상 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.901-906
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) is widely used in various areas such as civil and military applications including entertainment industries. Among them, UAV based communication system is also one of the important application areas. Relays have been received much attention in communication system due to its benefits of performance enhancement and coverage extension. In this paper, we investigate UAVs as relays especially focusing on physical layer. First, we introduce the research on UAV application for the relays, then the basic performance of relay networks in dual-hop communication system is analyzed by adopting decode-and-forward (DF) relaying protocol. The performance is represented using symbol error rate (SER) and UAV channels are applied by assuming asymmetric environments. Based on the performance analysis, we discuss performance enhancement issues by considering physical layer.

Fast UAV Deployment in Aerial Relay Systems to Support Emergency Communications (위급상황 통신 지원용 공중 통신중계기의 빠른 배치 기법)

  • Sang Ik, Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.62-68
    • /
    • 2023
  • An aerial relay system utilizing an unmanned aerial vehicle(UAV) or drone is addressed for event-driven operations such as temporary communication services for disaster affected area, military and first responder support. UAV relay system (URS) targets to provide a reliable communication service to a remote user equipment or an operator, therefore, a fast UAV placement to guarantee a minimum quality of service(QoS) is important when an operation is requested. Researches on UAV utilization in communication systems mostly target to derive the optimal position of UAV to maximize the performance, however, fast deployment of UAV is much more important than optimal placement under emergency situations. To this end, this paper derives the feasible area for UAV placement, investigates the effect of performance requirements on that area, and suggests UAV placement to certainly guarantee the performance requirements. Simulation results demonstrate that the feasible area derived in this paper matches that obtained by an exhaustive search.

A Study on the international legality issues of armed attack by drone (무인항공기의 무력공격을 둘러싼 국제법상 쟁점에 관한 연구)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.37-61
    • /
    • 2013
  • In modern international law, the absence of legal definition regarding drone(Unmanned Aerial Vehicle) has made legal scholars work on an typical analogy between aircraft codified in the international document and drone. The wording of the Convention on International Civil Aviation is limited to two categories of aircraft, such as civil aircraft and state aircraft, whereas military aircraft is not legally defined. As such it is, the current practices of the State regarding the drone flight over foreign territory have proven a hypothese that drone is being deemed as military aircraft. Principal usage of drone lies in reconnaissance and surveillance mission as well as so-called targeted killing, which is prohibited if the killing is treacherous. Claimed war against terrorism, however, is providing a legal rationale that targeted killing is not treacherous, and that the targeted person is not civilian but combatant. In such context, armed attack of drone is deemed legal and justified. Consequently, such attack is legal in the general context of the war. The rules that govern targeting do not turn on the type of weapon system used, and there is no prohibition under the laws of war on the use of technologically advanced weapons systems in armed conflict so long as they are employed in conformity with applicable laws of war. Drones may present interesting new challenges because of their sophistication and the technological advantage they convey to their operators.

  • PDF

A Study on the Development of Airworthiness Standards for VTOL UAS (수직이착륙(VTOL) 무인항공기 감항기준 개발에 대한 연구)

  • Gil, Ginam;Yoo, Minyoung;Park, Jongsung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • In conjunction with the Fourth Industrial Revolution, the unmanned aerial vehicle industry is being developed to a new paradigm by combining advanced technologies such as AI, Big Data and the IoT. Aeronautical developed countries such as the U.S. are focusing their efforts on the development of the safer unmanned aerial vehicles. The Korea Aerospace Research Institute, as part of the national R&D project in 2011, had succeeded in developing the first vertical takeoff and landing (VTOL) UAS, called Smart-UAV. However, although the development technology of the VTOL UAS is possessed, developing and operating of the VTOL UAS for commercial or military use are limited. The type certification procedure of the VTOL UAS developed by domestic technology is stipulated in the Korean Aviation Safety Act, but the Korean VTOL UAS airworthiness standards (KAS) hsve not been established. Thus, this study investigated the development trends of the VTOL UAS in Korea and abroad and national certification systems and procedures, and benchmarked the special conditions for the VTOL aircraft, announced by the EASA on July 2, 2019, to establish standards for type certificate of the VTOL UAS in Korea.

Analysis of the Impact of Transmission Towers on the Performance of RF Scanners for Drone Detection (드론탐지용 RF스캐너의 성능에 송전탑이 미치는 영향 분석)

  • Moon-Hee Lee;Jeong-Ju Bang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.112-122
    • /
    • 2024
  • Recently, as unmanned aerial vehicle technology such as drones has developed, there are many environmental, social and economic benefits, but if there is malicious intent against important national facilities such as airports, public institutions, power plants, and the military, it can seriously affect national safety and people's lives. It can cause damage. To respond to these drone threats, attempts are being made to introduce detection equipment such as RF scanners. In particular, power transmission towers installed in substations, power plants, and Korea's power system can affect detection performance if the transmission tower is located in the RF scanner detection path. In the experiment, a commercial drone was used to measure the signal intensity emitted from the drone and confirm the attenuation rate. The average and maximum attenuation rates showed similar trends in the 2.4 GHz and 5.8 GHz bands, and were also affected by the density of the structure.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.