• Title/Summary/Keyword: Military Satellite System

Search Result 135, Processing Time 0.026 seconds

Capacity of a DS-CDMA Satellite Communication System under a Multitone Jamming (톤 재밍환경에서 DS-CDMA방식 위성통신 링크의 용량분석)

  • Choi, Young-Kyun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.30-36
    • /
    • 1999
  • Jamming is an important factor in the military satellite communication system. In this paper, link capacity and jamming margin of the DS-CDMA(Direct Sequence-Code Division Multiple Access) military satellite communication system are analyzed and calculated under a multitone jamming. The analysis was performed with two types of transponders loaded on a geosynchronous satellite. Calculation methods for link capacity and jamming margin were obtained. The results of the analysis show that capacity of a transponder which does modulation/demodulation, decoding/encoding in addition to despreading/respeading is twice as much as that of a tranponder which does despreading /respreading only.

  • PDF

Survey on Navigation Satellite System and Technologies (위성항법 시스템 및 기술 동향)

  • Lee, S.;Ryu, J.G.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.61-71
    • /
    • 2021
  • Navigation satellite systems (GPS, GLONASS etc.) provide three main services, i.e., positioning for location based services, navigation for multi-modal transportation services, and timing for communication and critical infrastructure services. They were started as military systems but were extended to civil service. Navigation satellite navigation system began with GPS in the USA and GLONASS in Russia at nearly the same time. Indian NavIC and Chines BDS announced their FOCs in 2016 and 2020, respectively and European Galileo and Japanese QZSS are catching up others. In these days, Navigation Satellite System, Positioning, Navigation, and Timing services are part of our daily life very closely. They are required for autonomous driving car, Unmanned vehicles like UAV, UGV, and UMV, 5G/6G telecommunications, world financial system, power system, survey, agriculture, and so on. The services among navigation satellite systems are very competitive and also cooperative one another. This article describes the status of these systems and evolution in the technical and service senses, which may be helpful for planning korea positioning system(KPS).

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Study on Multi-Mode Monopulse Signal Processing System Providing Optimal Time Delay under High Doppler Condition (고속 도플러 편이 환경에서 최적 시간지연을 갖는 다중모드 모노펄스 신호처리에 관한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ahn, Huisoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.582-589
    • /
    • 2016
  • Multi-mode monopulse system is widely used for satellite terminal like UAV because of high tracking accuracy and low size/weight profile. In order to calculate tracking error, Multi-mode monopulse system utilizes high-order mode signal, and it should have enough C/N(carrier to noise) level therefore tracking system needs narrow band filtering of received satellite beacon signal as much as possible. However, UAV suffers for beacon frequency drift derived from Doppler effect due to satellite figure 8 movement and UAV maneuvering. Therefore wideband signal processing needs to be considered in advance for exact doppler compensation and consequent time delay. In this paper, we propose the multi-stage Digital Signal processing system for beacon signal, which could minimize the signal delay under high Doppler and low C/N condition.

A Study on Advanced Satellite Uplink Rain Attenuation Compensation using Digital Transponder of Next Military Satellite (차기 군위성체계의 디지털 위성중계기를 이용한 상향링크 강우감쇠에 대한 향상된 보상방안 연구)

  • Kim, Jung-Ho;Lee, Sue-Hyun;Kim, Bong-Su;Lee, Chang-Young;Song, Young-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1696-1703
    • /
    • 2010
  • Increased demand for military satellite communications system and due to the depletion of resources of existing satellite communications frequencies, Ka-band and EHF-band satellite communication systems is growing demand for development. As a result, the study of rain attenuation mitigation for Ka/EHF-band frequencies has been achieved. The method to compensate rain attenuation on Ka-band(20/30) using the signal power measurement function in Digital Transponder of Next Military Satellite has been proposed in this paper. This method is more effective than generally used method by Beacon and UPC(uplink power control) in giving the precise rain attenuation measurement and correction.

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Design of a Ranging Signal in the Frequency Hopping Satellite Communication System (주파수 도약 위성통신 시스템에서 레인징 신호 설계 방안)

  • Hwang, Seok-gu;Sim, Eun-seok;Jo, Byung-gak;Yoon, Won-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.762-768
    • /
    • 2016
  • In this paper, a method for generating ranging signal to reduce the effects of interference and overcome intentional jamming is proposed in slow frequency hopping(SFH) communication system. A terminal uses ranging signal for initial Up-link synchronization in the frequency hopping communication systems using multi-terminal. However, ranging signal generated by unsynchronized terminal acts as an interference signal to another terminal. Therefore, we propose the design of the ranging signal with PN sequence in order to minimize the affection to the other terminal and simulated its performance. From the simulated result, we confirm synchronization performance.

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

GNSS: Resuscitated GLONASS, GPS Modernization, Galileo, and Beyond

  • Liu, Tony
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.27-31
    • /
    • 2006
  • With the fast developing pace, the Galileo system is entering the navigation stage with high profile. At the same time, U.S. is accelerating his GPS modernization schedule, and Russian also begins to resuscitate their GLONASS. Moreover, Chinese Beidou system has also joined the satellite navigation family with low profile already. And of course Japanese QZSS even moves forward. Along with the bitter competition in technology, finance, market and even military affairs, all these systems will firmly benefit each other and massively extend the role of civil satellite navigation industry in the future. The Global Navigation Satellite Systems (GNSS) would be almost certain to include above major satellite navigation systems. Thus how to utilize the navigation satellite resource for world peace and promote the progress of mankind should be the key issue of this century.

  • PDF

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF