• Title/Summary/Keyword: Migration velocity

Search Result 129, Processing Time 0.025 seconds

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Journal of Applied Reliability
    • /
    • v.5 no.2
    • /
    • pp.261-272
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board), electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water droll acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

A Theoretical Approach on the Migration of a Chelating Radionuclide in Porous Medium (다공성 매질에서의 착화하는 방사성핵종의 이동에 대한 이론적 접근)

  • Baik, Min-Hoon;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.49-59
    • /
    • 1992
  • A new model was developed in order to investigate the effects of chelating agents on the migration of a radionuclide in the form of ion or chelate. The migration behavior of the chelated radionuclide was analyzed by formulating a convective-dispersion transport equation which included a degradation of chelating agent and chelated radionuclide. The mathematical model was analytically solved and checked with the existing retardation factor. The results show that the migration velocity of the chelated radionuclide was much faster than the ionic one due to the decreased retardation. Therefore, it was concluded that a new remedial action should be developed to reduce the generation and release of chelating agents from the nuclear power plant into the environment.

  • PDF

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.339-348
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board),electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water drop acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity o of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

Pseudo-multiscale Waveform Inversion for Velocity Modeling

  • Yang Dongwoo;Shin Changsoo;Yoon Kwangjin;Yang Seungjin;Suh Junghee;Hong Soonduk
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.159-162
    • /
    • 2002
  • We tried to obtain an initial velocity model for prestack depth migration via waveform inversion. For application of any field data we chose a smooth background layered velocity model (v=v0 + k x z) as an initial velocity model. Newton type waveform inversion needs to invert huge Hessian matrix. In order to compute full Hessian matrix arising from full aperture data and full illumination zone, we meet insurmountable difficulties of paying astronomical computing cost. For the layered media, approximate Hessian emerging from single shot aperture data can be used repeatedly for split spread source configuration. In our work of using this Hessian characteristic of layered media we attempted to obtain the approximate velocity model as close as possible to the true velocity model in first iteration.

  • PDF

Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea (동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Go, Gin-Seok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.711-717
    • /
    • 2006
  • In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

Verification of Practicality for the SSBL and Pinger Synchronizing Biotelemetry Method and System through the Tracking of Fish (어류의 행동추적에 의한 SSBL · 핑거동기 바이오텔레메터리 방식과 시스템의 실용성 검증)

  • Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.78-85
    • /
    • 2004
  • The new biotelemetry method and system that the installation and the treatment of equipment is convenient and the instantaneously detailed position of the fish attached a pinger is able to track comparatively easily had been developed, an practicality of it were verified in the water tank and the small sea port through the tracking of fish. The biotelemetry method had been gotten the three dimensional locations of fish to the receiving transducer by combining of the super short base line (SSBL) method to detect the direction of pinger and the pinger synchronizing method to measure the range from receiving transducer to pinger. The receiving system had been designed to realize the high precision or wide detection range by application of the basic design method for receiving system of biotelemetry and the hydrophone array configuration. From tracking test of carp in the water tank, the migration course and the velocity of carp was investigated and the observed migration course was compared with measurement. The measured migration course of carp coincided with the observation in the main and the position of carp was able to track three dimensionally. The velocity of carp measured by the moving average method was 11.2cm/s. From tracking test of yellowtail in the small sea port, the migration course and the velocity of yellowtail was investigated at natural condition. The position of yellowtail was able to track three dimensionally and the velocity of it measured by moving average method was 43.9cm/s.

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.

Reflection travel time tomography using blocky parameterization

  • Kim Wonsik;Hong Soonduk;Shin Changsoo;Yang Seungjin
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.163-166
    • /
    • 2002
  • Initial velocity model close to real velocity structure of the subsurface governs the quality of image of prestack depth migration. Geophysicists employ velocity estimation tools such as velocity analysis (curvature method, coherency inversion), tomography and waveform inversion. We present a reflection tomography that parameterizes the subsurface into the movable blocks. By interpreting the depth-migrated section or stacked section, we can design an initial constant velocity model having only impedance boundaries. We use shooting-raytracing method that allows us to calculate the Jacobian-matrix efficiently.

  • PDF

Prestack depth migration for gas hydrate seismic data set (가스 하이드레이트 탄성파 자료에 대한 중합전 심도 구조보정)

  • Hien, Doan Huy;Jang, Seong-Hyung;Kim, Yong-Wan;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.564-568
    • /
    • 2007
  • Gas hydrate has been attractive topic for two dedicates because it may cause the global warming, ocean hazards associated with the instability of marine slope due to the gas hydrate release as well as high potential of future energy resources. The study on gas hydrate in Ulleung basin has been performed since 1999 to explore the potential and distribution of gas hydrate offshore Korea. The numerous multi channel seismic data have been acquired and processed by Korea Institute of Geosciences and Mineral Resources (KIGAM). The results showed clearly the gas hydrate indicators such as pull up structure, bottom simulating reflector (BSR), seismic blanking zone. The prestack depth migration has been considered as fast and accurate technique to image the subsurface. In this paper, we will present both the conventional seismic data processing and apply Kirchhoff prestack depth migration for gas hydrate data set. The results will be applied for core sample collections and for proposal more detail 2D with long offset or 3D seismic exploration.

  • PDF