• Title/Summary/Keyword: Migration Agent

Search Result 211, Processing Time 0.031 seconds

Antioxidant and Antiproliferative Activities of the Halophyte Angelica japonica Growing in Korean Coastal Area (한국 연안지역에 서식하는 갯강활의 항산화 및 암세포증식 억제 활성)

  • Jayapala, Priyanga S.;Oh, Jung Hwan;Kong, Chang-Suk;Sim, Hyun-Bo;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.749-761
    • /
    • 2022
  • This study evaluated the antioxidizing and antiproliferative effects of Angelica japonica extract and its solvent-partitioned fractions. A dried sample of the halophyte A. japonica was extracted twice using methylene chloride (CH2Cl2) and extracted twice again using methanol (MeOH). The combined crude extracts were then fractionated by solvent polarity into distilled water (water), n-butanol (n-BuOH), 85% aqueous methanol (85% aq.MeOH), and n-hexane fractions. The antioxidant activities of the crude extracts and their solvent-partitioned fractions were assessed according to their DPPH radical and peroxynitrite scavenging abilities, formation of intracellular reactive oxygen species (ROS), DNA oxidation, NO production, and ferric reducing antioxidant power (FRAP). The crude extract showed significant antioxidant activity in the overall antioxidizing bioassay systems. Among solvent-partitioned fractions, good antioxidant activities were observed in n-BuOH and 85% aq.MeOH fractions and significantly correlated with the polyphenol and flavonoid contents of the samples. Furthermore, all samples tested, including the crude extract, not only showed cytotoxic effects against human cancer cells (AGS, HT-29, MCF-7, and HT-1080) but also prevented cell migration in a dose-dependent manner in the wound healing assay using HT 1080. Among the solvent-partitioned fractions, the 85% aq.MeOH fraction most effectively inhibited the invasion of HT-1080 cells. Therefore, these results suggest that A. japonica may be a potential antioxidizing and antiproliferative agent.

A Rat Pylorus Stricture Model to Create Stent-induced Granulation Tissue Formation (백서 날문부에서 스텐트 유도 조직 과증식 형성을 위한 전임상 모델에 관한 연구)

  • Kim, Min-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.559-565
    • /
    • 2022
  • In this study, we intend to develop a granulation tissue formation model. As a pilot experiment, a contrast agent was injected into the pylorus in 3 rats, the normal pylorus lumen size was confirmed, and a stent was placed. Stent migration was confirmed in to the duodenum within 1 week. In this experiment, stent was sutured and fixed to induce granulation tissue formation after gastrostomy under a fluoroscopic guidance. Twenty rats were divided into Healthy Group / Gastrostomy Group. After anesthesia of the Gastrostomy Group, an abdominal incision was performed, and gastrostomy was performed under a fluoroscopic guidance, and a stent was placed into the pylorus. In order to prevent stent migration due to peristalsis, suture between the pylorus and the proximal end of the stent was performed. Postoperative behavior and weight changes were monitored daily. Four weeks after surgery, gastrointestinal fluoroscopy imaging was performed and rats were sacrifices. To evaluate the degree of granulation formation, the stent was sectioned transversely. Gastrostomy group was statistically significantly higher than Healthy Group in granulation area ratio (all p<.001). In conclusion, it is considered that the level of tissue overgrowth formation for preclinical evaluation of the pylorus stricture model through gastrostomy is appropriate as a research evaluation tool.

Berberine Suppresses Hepatocellular Carcinoma Proliferation via Autophagy-mediated Apoptosis (베르베린을 처리한 간세포암에서 자가포식 경로와 관련된 세포자멸사)

  • Yun Kyu Kim;Myeong Gu Yeo
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.287-295
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, necessitating novel therapeutic strategies. The chemotherapeutic agents used to treat HCC patients are toxic and have serious side effects. Therefore, we investigated the efficacy of anticancer drugs that reduce side effects by targeting tumor cells without causing cytotoxicity in healthy hepatocytes. Berberine, an isoquinoline alkaloid derived from plant compounds, has emerged as a potential candidate for cancer treatment due to its diverse pharmacological properties. The effect of berberine on HepG2 cell viability was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. HepG2 cell proliferation was determined through a colony-forming assay. The effects of berberine on HepG2 cell migration were evaluated using a wound-healing assay. Berberine inhibited the proliferation of HepG2 cells, as well as colony formation and migration. Berberine treatment increased the expression of autophagy-related genes and proteins, including Beclin-1 and LC3-II, and elevated the activities and mRNA expression of Caspase-9 and Caspase-3. Additionally, in experiments utilizing the Cell-Derived Xenograft animal model, berberine treatment reduced tumor size and weight in a concentration-dependent manner. These results demonstrate the potential of berberine as a versatile anticancer agent with efficacy in both cellular and animal models of hepatocellular carcinoma. The findings herein shed light on berberine's efficacy against HCC, presenting opportunities for targeted and personalized therapeutic interventions.

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

Cell Cycle Arrest of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경 수용액 추출물에 의한 인체 폐암세포의 성장억제 기전 연구)

  • Kang Rak Won;Lee Jae Hun;Kam Cheol Woo;Choi Byung Tae;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. We investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the cell proliferation of human lung carcinoma A549 cells in order to understand its anti-proliferative mechanism. AEPG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by AEPG treatment was associated with morphological changes such as membrane shrinking, cell rounding up and inhibition of cell migration. DNA flow cytometric histograms showed that populations of both Sand G2/M phase of the cell cycle were increased by AEPG treatment in a concentration-dependent manner. AEPG treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21 and p27. In addition, SSS treatment resulted in down-regulation of Cdk2 and Cdk4 expression. The present results indicated that AEPG-induced inhibition of lung cancer cell proliferation is associated with the blockage of S to G2/M phase progression the induction of apoptosis. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

XML-based Portable Self-containing Representation of Strongly-typed Genetic Program (XML 기반 강건 타입형 유전자 프로그램의 이식${\cdot}$독립적 표현)

  • Lee Seung-Ik;Tanev Ivan;Shimohara Katsunori
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.277-289
    • /
    • 2005
  • To overcome the long design time/high computational effort/low computational performance of phylogenetic learning featuring selection and reproduction, this paper proposes a genetic representation based on XML. Since genetic programs (GP) and genetic operations of this representation are maintained by the invocation of the built-in off-the-shelf XML parser's API, the proposed approach features significant reduced time consumption of GP design process. Handling only semantically correct GPs with standard XML schema can reduce search space and computational effort. Furthermore, computational performance can be improved by the parallelism of GP caused by the utilization of XML, which is a feasible system and wire format for migration of genetic programs in heterogeneous distributed computer environments. To verify the proposed approach, it is applied to the evolution of social behaviors of multiple agents modeling the predator-prey pursuit problem. The results show that the approach can be applied for fast development and time efficiency of GPs.

Effect of VEGF on the Secretion of MMP-2 and Plasmin from Human Keratinocyte Cells (Keratinocytes 세포의 MMP-2 및 plasmin 분비에 미치는 VEGF의 영향)

  • 김환규;오인숙;소상섭;박종완
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.237-240
    • /
    • 2001
  • Epithelial cell migration plays an important role in many physiological processes such as morphogenesis and wound healing, and cell mobility requires the release of the cell from its adhesion site. This is directed, at least in part, by limited proteolysis of matrix molecules by matrix metalloproteinases (MMPs). MMPs are zinc-dependent proteases produced by a variety of cell types, and have a fundamental role in tissue remodelling, tumour invasion and metastasis. In addition, the ability of cells to mediate fibrinolytic agent, plasmin. The purpose of this study was to test if vascular endothlial growth factor (VEGF) can regulate the production of MMPs and plasmin by keratinocyte cells. Supernatants from a human keratinocyte cell line grown in the presence or absence of VEGF (10ng/mL) produced ?2.5 fold increases in cell proliferation, and ?3.0 fold increses in MMP-2 and plasmin levels. Our results suggest that VEGF may modulate keratinocyte cell proliferating activity by increasing the abundance of MMP-2 and plasmin, and indicates a role for VEGF in the regulation of keratinocyte behaviour in wound healing and tissue remodelling.

  • PDF

Sopung-san Extract Enhances healing potential on Full-thickness Skin Wound in Rats: Role of VEGF and TGF-β1 (흰쥐의 전층피부상처 동물모델에서 소풍산(消風散)이 VEGF 및 TGF-β1발현에 미치는 영향)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Wounds are commonly created during almost every kind of surgery, trauma and skin diseases. Delayed wound healing affects a plenty of patients and requires prolonged treatments that seriously reduce the quality of life for patients. Skin damage involving large areas or great severity can lead to disability or even death. Wound healing involves a complicated series of actions, of various tissues and cell lineages, concerning inflammation, migration, proliferation, reepithelialization, and remodeling. Sopung-san is reported to have anti-inflammatory effect and has been used for various skin diseases such as allergic dermatitis and atopic dermatitis. In this study, the hypothesis that oral treatment with Sopung-san could enhances healing potential on rat full thickness skin wounds was tested. Twenty young male Sprague-Dawley rats were used for the studies. A full-thickness skin wound was made on the dorsal skin of the rats. Either Sopung-san water extract (SPS) or saline (Control) was orally administrated every day. The wound area was measured and the percentages of wound contraction, wound healed and wound epithelization were calculated. Wound tissue samples were excised following injection for histopathological and immunohistological examination. Wound area in rats of SPS group significantly was decreased compared to Control. SPS group showed significant promotion of wound healing compared to Cotrol group in the percentages of wound contraction, wound healed and wound epithelization. Histopathological examination revealed that SPS induces neo-vascularization potential in wound healing process. SPS treatment in rats significantly accelerated cutaneous wound healing in the neo-vascularization process by increasing VEGF and $TGF-{\beta}1$ synthesis. The results suggest that Sopung-san affects key cellular processes responsible for wound repair and point to a unique potential for this molecule in the therapy of skin wounds, particularly as an angiogenic agent.

Scabraside D Extracted from Holothuria scabra Induces Apoptosis and Inhibits Growth of Human Cholangiocarcinoma Xenografts in Mice

  • Assawasuparerk, Kanjana;Vanichviriyakit, Rapeepun;Chotwiwatthanakun, Charoonroj;Nobsathian, Saksit;Rawangchue, Thanakorn;Wittayachumnankul, Boonsirm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.511-517
    • /
    • 2016
  • Scabraside D, a sulfated triterpene glycoside extract from sea cucumber Holothulia scabra, shows various biological activities, but effects on human cholangiocarcinoma cells have not previously been reported. In the present study, we investigated the activity of scabraside D against human cholangiocarcinoma (HuCCA) both in vitro and for tumor growth inhibition in vivo using a xenograft model in nude mice. Scabraside D ($12.5-100{\mu}g/mL$) significantly decreased the viability and the migration of the HuCCA cells in a dose-dependent manner, with 50% inhibitory concentration (IC50) of $12.8{\pm}0.05{\mu}g/mL$ at 24 h. It induced signs of apoptotic cells, including shrinkage, pyknosis and karyorrhetic nuclei and DNA fragmentation on agarose gel electrophoresis. Moreover, by quantitative real-time PCR, scabraside D effectively decreased Bcl-2 while increasing Bax and Caspase-3 gene expression levels suggesting that the scabraside D could induce apoptosis in HuCCA cells. In vivo study demonstrated that scabraside D (1 mg/kg/day, i.p. for 21 days) significantly reduced growth of the HuCCA xenografts without adverse effects on the nude mice. Conclusively, scabraside D induced apoptosis in HuCCA cells and reduced the growth of HuCCA xenographs model. Therefore, scabraside D may have potential as a new therapeutic agent for cholangiocarcinoma.

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.