• Title/Summary/Keyword: Middle Cerebral Artery Infarction

Search Result 143, Processing Time 0.032 seconds

Can Computed Tomographic Angiography Be Used to Predict Who Will Not Benefit from Endovascular Treatment in Patients with Acute Ischemic Stroke? The CTA-ABC Score

  • Kwak, Hyo-Sung;Park, Jung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.470-476
    • /
    • 2020
  • Objective : The objective of this study was to develop a score to predict patients with acute ischemic stroke (AIS) who will not benefit from endovascular treatment (EVT) using computed tomographic angiography (CTA) parameters. Methods : The CTA-ABC score was developed from 3 scales previously described in the literature: the Alberta Stroke Program Early CT Score (0-5 points, 3; 6-10 points, 0), the clot burden score (0-3 points, 1; 4-10 points, 0), and the leptomeningeal Collateral score (0-1 points, 2; 2-3 points, 0). We evaluated the predictive value of CTA parameters associated with symptomatic intracranial hemorrhage (sICH) or malignant middle cerebral artery infarction (MMCAI) after EVT and developed the score using logistic regression coefficients. The score was then validated. Performance of the score was tested with an area under the receiver operating characteristic curve (AUC-ROC). Results : The derivation cohort consisted of 115 and the validation cohort consisted of 40 AIS patients. The AUC-ROC was 0.97 (95% confidence interval [CI], 0.94-0.99; p<0.001) in the derivation cohort. The proportions of patients with sICH and/or MMCAI in the derivation cohort were 96%, 73%, 6%, and 0% for scores of 6, 5, 1, and 0 points, respectively. In the validation group, the proportions were similar (90%, 100%, 0%, and 0%, respectively) with an AUC-ROC of 0.96 (95% CI, 0.90-1.00; p<0.001). Conclusion : Our CTA-ABC score reliably assessed risk for sICH and/or MMCAI in patients with AIS who underwent EVT. It can support clinical decision-making, especially when the need for EVT is uncertain.

Effects of Electro-acupuncture and Therapeutic Exercise on Nervous system in the Ischemic Stroke Rats (전침자극과 운동치료가 허혈성 뇌졸중 백서모델의 신경계에 미치는 영향)

  • Yoo, Young-Dae;Kim, Gi-Do;Chun, Jin-Sung;Jeong, Hyun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1014-1020
    • /
    • 2006
  • This study was intended to examine the effects of electroacupuncture(EA) and therapeutic exercise on the improvement of exercise function, BNDF, and HSP70 protein expression in an ischemic stroke model induced by MCA occlusion. Experiments were conducted for 1, 3 days, 1, 8 weeks respectively. Group I was a group of EA and therapeutic exercise; Group II was a group of therapeutic exercise; Group III was a group of EA; Group IV was a sham group of EA; Group V was a control group; and Group VI was a sham group without ischemic stroke. In each group, neurologic motor behavior test, histologic observations, BDNF, and HSP70 expression were observed and analyzed. The following results were obtained. The results of behavior test suggest that 8 weeks after ischemic stroke was induced, Group I improved in degeneration and inflammation of muscle fiber and decreased in destruction of nerve cells and cerebral infarction, indicating a similar state of muscle fiber and brain to Group VI. In immunohistochemical observations, Group I showed increase in BDNF and decrease in HSP70. Based on these results, EA and therapeutic exercise may improve muscle atrophy and change in BDNF and HSP70 expression of ischemic stroke rats and contribute to the improvement of exercise function.

$^{99m}Tc$-Glucarate Uptake in Ischemic Tissue of Experimental Models of Cerebral Ischemia (실험적 뇌허혈증 모델에서 허혈 조직의 $^{99m}Tc$-glucarate 섭취)

  • Jeong, Jae-Min;Kim, Young-Ju;Choi, Seok-Rye;Kim, Chae-Kyun;Mar, Woong-Chun;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.484-492
    • /
    • 1996
  • To detect ischemic tissue in experimental model of cerebral ischemia made by middle cerebral artery(MCA)-occlusion, we acquired triple image of $^{99m}Tc$-glucarate, [$^{18}F$]fluoro-deoxyglucose (FDG), and 2,3,5- triphenyltetrazolium (TTC) staining. We made cerebral infarction either with reperfusion (after occlusion of 2 hours) or without reperfusion in 10 Sprague-Dawley rats by inserting thread to MCA through internal carotid artery. After 22 hours, we injected 740 MBq of $^{99m}Tc$-glucarate and 55.5 MBq of [$^{18}F$]FDG through tail vein. Each 1 mm slice of rat brains was frozen and exposed to imaging plate for 20 minutes in freezer to get an [$^{18}F$]FDG image. After 20 hours enough to fade radioactivity of [$^{18}F$]FDG, the slices were again imaged by BAS1500 for $^{99m}Tc$-glucarate uptake. Finally, these brain tissues were stained with TTC. Semi-quantitative visual analysis was done by grading 0 to 3 points according to the degree of uptakes($^{99m}Tc$-glucarate) and decreased uptakes([$^{18}F$]FDG and TTC). Ten rats survived with neurologic symptoms. TTC staining confirmed the development of infarction. The size of the infarction was relatively larger in the group without reperfusion. [$^{18}F$]FDG images were similar to TTC-stained images. However, we found regions with intermediate uptake which were not stained with TTC. We found regions with intermediate [$^{18}F$]FDG uptake where TTC staining was normal. $^{99m}Tc$-glucarate uptake was round only in TTC non-stained region. In the TTC stained regions, there were no uptake of $^{99m}Tc$-glucarate. We could not find clear relation between $^{99m}Tc$-glucarate uptake with [$^{18}F$]FDG uptake. This was partly because percent uptake of $^{99m}Tc$-glucarate was so small (less than 1 percent of injected dose) and because there were quite heterogeneity of patterns of [$^{18}F$]FDG uptake and TTC. With these findings, we could conclude that $^{99m}Tc$-glucarate were taken up only in part of ischemic tissues which were proven to be nonviable. The establishment of MCA-occluded rat model with or without reperfusion and triple imaging for $^{99m}Tc,\;^{18}F$ and TTC helped the characterization of $^{99m}Tc$-glucarate uptakes. Further work is needed to clarify the meaning or diversities or [$^{18}F$]FDG and TTC and their relation with $^{99m}Tc$-glucarate.

  • PDF

Extent of Contrast Enhancement on Non-Enhanced Computed Tomography after Intra-Arterial Thrombectomy for Acute Infarction on Anterior Circulation : As a Predictive Value for Malignant Brain Edema

  • Song, Seung Yoon;Ahn, Seong Yeol;Rhee, Jong Ju;Lee, Jong Won;Hur, Jin Woo;Lee, Hyun Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.4
    • /
    • pp.321-327
    • /
    • 2015
  • Objective : To determine whether the use of contrast enhancement (especially its extent) predicts malignant brain edema after intra-arterial thrombectomy (IAT) in patients with acute ischemic stroke. Methods : We reviewed the records of patients with acute ischemic stroke who underwent IAT for occlusion of the internal carotid artery or the middle cerebral artery between January 2012 and March 2015. To estimate the extent of contrast enhancement (CE), we used the contrast enhancement area ratio (CEAR)-i.e., the ratio of the CE to the area of the hemisphere, as noted on immediate non-enhanced brain computed tomography (NECT) post-IAT. Patients were categorized into two groups based on the CEAR values being either greater than or less than 0.2. Results : A total of 39 patients were included. Contrast enhancement was found in 26 patients (66.7%). In this subgroup, the CEAR was greater than 0.2 in 7 patients (18%) and less than 0.2 in the other 19 patients (48.7%). On univariate analysis, both CEAR ${\geq}0.2$ and the presence of subarachnoid hemorrhage were significantly associated with progression to malignant brain edema (p<0.001 and p=0.004), but on multivariate analysis, only CEAR ${\geq}0.2$ showed a statistically significant association (p=0.019). In the group with CEAR ${\geq}0.2$, the time to malignant brain edema was shorter (p=0.039) than in the group with CEAR <0.2. Clinical functional outcomes, based on the modified Rankin scale, were also significantly worse in patients with CEAR ${\geq}0.2$ (p=0.003) Conclusion : The extent of contrast enhancement as noted on NECT scans obtained immediately after IAT could be predictive of malignant brain edema and a poor clinical outcome.

Effect of exercise during acute stage of stroke on affected and unaffected hindlimb muscle mass of cerebral ischemic rat (뇌졸증 후 급성기 운동이 뇌허혈 유발쥐의 뒷다리근 질량에 미치는 영향)

  • Im, Ji-Hye;Choe, Myoung-Ae
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.1
    • /
    • pp.51-69
    • /
    • 2002
  • The purpose of this study was to identify the effect of cerebral ischemia on affected(Lt) and unaffected(Rt) side of soleus, plantaris and gastrocnemius muscle mass and determine the effect of exercise on affected and unaffected side on soleus, plantaris and gastrocnemius muscle mass during acute stage of stroke. Sixteen male Sprague-Dawley rate with 200-270g body weight were randomly divided into three groups: control, stroke, and exercise after stroke(St+Ex) group. The control group received sham operation and the stroke group and St+Ex group received transient right MCA(middle cerebral artery) occlusion operation. The St+Ex groups ran on a treadmill for 20min/day at 10m/min and $10^{\circ}$ grade for 6days. During the experimental period body weight and diet intake was measured every morning. On the 7th day after operation, muscles were dissected from both affected and unaffected side of hindlimb. Cerebral infarction of stroke and St+Ex groups were identified by staining with TCC for 30 minutes. The data were analyzed by Kruskal-Wallis test and Mann-Whitney U test using the SPSSWIN 9.0 program. Significance was accepted at the level of p<0.05. The results were summarized follows : 1) There were no significant difference of the body weight on the first day of experiment among 3 groups. Whereas on the 7th day, the body weight of both stroke group and St+Ex group were significantly smaller than that of control group. Body weight of St+Ex group on the 7th day tended to be larger than that of stroke group. 2) Total diet intake of both stroke group and St+Ex group were also significantly smaller than that of control group. While total amount of diet intake in St+Ex group tended to be larger than that of stroke group. 3) The weight of gastrocnemius muscle of affected side in stroke group significantly decreased compared to that of control group and the weight of soleus and plantaris muscle of affected side in stroke group tended to decrease compared to that of control group. 4) The weight of plantaris muscle of unaffected side in stroke group significantly decreased compared to that of control group and the weight of soleus and gastrocnemius muscle of unaffected side in stroke group tended to decrease compared to those of control group. 5) The weight of gastrocnemius muscle of affected side in stroke group significantly decreased compared to that of unaffected side and there was no significant difference of the weight of soleus and plantaris muscle in stroke group between affected side and unaffected side. 6) The weight of soleus, plantaris and gastrocnemius muscle of both affected side and unaffected side in St+Ex group had a tendency of increase compared to those of stroke group. The relative weight of soleus and gastrocnemius muscle of affected side and soleus muscle of unaffected side in St+Ex group had a tendency to increase compared to those of stroke group. Based on these results, exercise during acute stage of stroke might attenuate muscle atrophy of both affected and unaffected side of hindlimb muscles.

  • PDF

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

Effects of Cardiotonic Pills® on Cerebrovascular CO2 Reactivity and Erythrocyte Deformability in Normal Subjects: A Pilot Study

  • Sang-Kwan Moon;Han-Gyul Lee;Seungwon Kwon;Seung-Yeon Cho;Seong-Uk Park;Woo-Sang Jung;Jung-Mi Park;Chang-Nam Ko;Ki-Ho Cho
    • The Journal of Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.87-103
    • /
    • 2023
  • Backgrounds and objectives: Cardiotonic Pills® (CP) are used for vascular diseases such as coronary diseases, atherosclerosis, and cerebral infarction. This study aimed to determine the transient effects of CP on cerebrovascular CO2 reactivity (CVR) and erythrocyte deformability in normal subjects. Methods: This study had a crossover design and included 10 participants who were randomly allocated to 2 groups. The experimental group was given CP with water, while the control group was given only water. CVR was measured by hyperventilation-induced CVR of the middle cerebral artery (MCA) using transcranial Doppler (TCD). Erythrocyte deformability was measured using a Rheoscan-D microfluidic ektacytometer. All measurements were performed prior to and 1, 2, and 3 hours after CP or water administration. Blood pressure and heart rate were also measured before and after administration. Results: CP significantly improved CVR 3 hours after administration in the experimental group compared to the control group (p = 0.042). The corrected blood flow velocity at partial pressure of end-tidal carbon dioxide (PETCO2) = 40mmHg (CV40) was also significantly improved 2 and 3 hours after administration in the CP group compared to the control group (p = 0.036 and p = 0.021, respectively). CP significantly improved erythrocyte deformability 3 hours after administration in the experimental group compared to the control group (p = 0.027). Mean heart rate and mean blood pressure showed no change. Conclusions: This study demonstrated that CP increases CVR and erythrocyte deformability. These results suggested that CP improves cerebral microcirculation which provide evidence for the future use of CP for prevention of ischemic stroke and neurodegenerative diseases.

A Case Report of Gait Disturbance, Cognitive Impairment, Dysuria, and Dysphagia in a Stroke Patient Treated with Traditional Korean Medical Treatment (한의 복합 치료를 통해 보행 장애, 인지 장애, 배뇨 장애, 연하 장애에 개선을 보인 중대뇌동맥 폐색에 의한 뇌경색증 환자 1례에 대한 증례보고)

  • Kim, Kwang-ho;Lee, Young-ung;Chu, Hongmin;Lim, Hyeon-seo;Kim, Cheol-hyun;Lee, Jeong-youn;Lee, Sang-kwan;Sung, Kang-keyng
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.2
    • /
    • pp.204-212
    • /
    • 2020
  • This study aimed to investigate the effect of traditional Korean medical treatments on a stroke patient with gait disturbance, cognitive impairment, dysuria, and dysphagia. A 78-year-old female with chronic middle cerebral artery infarction had symptoms of gait disturbance, cognitive impairment, dysuria, and dysphagia. After being treated with Korean medicine therapies, including acupuncture and herbal medicine, the patient's symptoms were significantly improved. During all the treatments, Indices including manual muscle test, functional ambulation category, functional independence measuring, mini-mental state examination-K, global deterioration scale, pelvic symmetry, functional ambulation profile used to evaluate her symptoms indicated improvement in her symptoms, without any side effects. Traditional Korean medical treatments, such as acupuncture and herbal medicine, can be considered to be effective therapies for a stoke patient who has symptoms of gait disturbance, cognitive impairment, dysuria, and dysphagia.

The Neuroprotective Activities of the Sam-Hwang-Sa-Shim-Tang in the Transient Ischemic Model in Rats.

  • Kim, Min-Sun;Hwang, Young-Sun;Ryu, Jong-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.85-85
    • /
    • 2001
  • Sam-Hwang-Sa-Shim-Tang(SHSST), a traditional Chinese medicine, composed of Rhei rhizoma, Scutellaria radix, and Coptidis rhizoma were used in the several disease including hypertension, constipation, and hemorrhage. In the present study, we investigated the neuroprotective effects of SHSST and its ingredients on the ischemia/ reperfusion-induced brain injury was evaluated in the rat brain. Ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 120 min and reperfusion was continued for 22 h. SHSST (450 mg/kg), Rhei rhii oma (100 mg/kg), Coptidis rhizoma (100 mg/kg), and Scutellaria radik (100 mg/kg) were orally administered twice, promptly prior to reperfusion and 2 h after the repefusion. Total infarction volume in the ipsilateral hemisphere of ischemia/ reperfusion rats was significantly lowed by the treatments of SHSST (39.2%) and Scutellaria radix (66.5%). However, Coptidis rhizoma did not show any significant effects on the total infarct volume. The inhibiting effect of Scutellaria radix on the total infarct volume was more potent than that of SHSST. In addition, Scutellaria radix significantly inhibited myeloperoxidase (MPO) activity, an index of neutrophil infiltration in ischemic brain tissue. However, there was marked mismatch between total infarct volume and MPO activity in the Scutellaria radix-treated rats. Our findings suggest that Scutellaria radix as an ingredient of SHSST plays a protective role in ischemia-induced brain injury by inhibiting neutrophil infiltration. The effects of Rhei rhizoma on transient brain ischemia-induced neuronal injury are under study.

  • PDF

Neuroprotective Effects of Ginkgo biloba extract, GBB, in the Transient Ischemic Rat Model

  • Oh, Jin-Kyung;Jung, Ji-Wook;Oh, Hye-Rim;Han, Yong-Nam;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • In the present study, we investigated the neuroprotective effects of standardized Ginkgo biloba extract (GBB) (total terpene trilactones, 13 ${\pm}$ 3%; biflavone, 4.5 ${\pm}$ 1.5%; flavonol glycoside, < 8%; proanthocyanidine, under detection limit) on ischemia-reperfusion-induced brain injury in the rats. Ischemia was induced by the intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 22 h. GBB was orally administered, promptly prior to reperfusion and 2 h after. Total infarction volume in the ipsilateral hemispheres of ischemia-reperfusion rats were significantly reduced by treatment with GBB in a dose-dependent manner (P<0.05). The therapeutic time window of GBB was 3 h in this ischemia-reperfusion rat model. Furthermore, GBB also significantly inhibited increased neutrophil infiltration of ischemic brain tissue, as estimated by myeloperoxidase activity. These findings suggest that GBB plays a crucial protective role in ischemia-induced brain injury, in part, via inhibition of neutrophil infiltration, and suggest that this GBB could serve as a neuroprotective agent following transient focal ischemic brain injury.