• Title/Summary/Keyword: Middle Carboniferous

Search Result 18, Processing Time 0.02 seconds

Conodont Biostratigraphy of the Middle Carboniferous System in the Taebaek Area, Kangwondo, Korea (강원도 태백 지역의 중부 석탄계 코노돈트 생층서)

  • Park, Soo-In;Sun, Seung-Dae
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.558-570
    • /
    • 2001
  • The Middle Carboniferous Manhang and Geumcheon Formations exposed in the Taebaek area, Kangwondo, Korea consist of sandstones and shales with some intercalation of limestone beds. The limestones of the formations contain abundant conodonts and other fossils. The purpose of this study is (1) to investigate the conodont fauna, (2) to assign conodont biozones of the Manhang and Geumcheon Formations, and (3) to refine their geologic age more exactly. The conodonts of the Manhang and Geumcheon Formations are 6 genera distributed into 11 species. Conodonts found from limestones of the Manhang Formation are Idiognathodus delicatus, Hindeodus minutus, Streptognathodus sp., Diplognathodus coloradoensis, N. bothorops, and N. medexultimus. This conodont fauna can be assigned to the Neognathodus bothrops Zone. This conodont biozone indicates that the geologic age of the Manghang Formation is the Atokan stage of the Middle Carboniferous Period. Conodonts came from limestones of the Geumcheon Formation are Idiognathodus delicatus, N. medexultimus, N. roundyi, N. dilatus, Diplognathodus edentulus, Hindeodus minutus, Streptognathodus elegantulus, and Gondolella bella. These conodonts permit them to be assigned to the Neognathodus roundyi Zone. This Conodont biozone indicates that the geologic age of the Geumcheon Formation is the Desmoinesian stage of the Middle Carboniferous Period.

  • PDF

Fusulinids from the Carboniferous strata in the Gangdong area of Samcheok coalfield, Korea

  • Lee, Chang-Zin;Kim, Jun-Ho;Lee, Sang-Min
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.768-777
    • /
    • 2006
  • The goal of this study is to elucidate the fusulinid biostratigraphy of the Carboniferous limestones distributed in the Gangdong area of Samcheok coalfield, Korea. The Carboniferous strata of the study area mainly comprise alternaton of dark gray shale, dark gray and reddish sandstone, and gray limestone. The limestones consist mainly of wackestonepackstone containing various fossil fragments such as crinoid, coral, brachiopod, foraminifera, fusulinid, and bryozoa; this observation thus suggests that the study site was the shallow marine environments. A tital of 12 species belonging to 5 genera of fusulinids are identified from the limestones of the Gangdong geologic section: Ozawainella turgida Sheng, Ozawainella sp. A, Ozawainella magna Sheng, Pseudostaffella antiqua (Dutkevich), Pseudostaffella paracompressa Safonova, Pseudostaffella kimi Cheong, Pseudostaffella sp., Beedeina lanceolata (Lee and Chen), Beedeina samarica (Rauser-Chernoussova), Beedeina sp. A, Neostaffella sphaeroidea cuboides Rauser-Chernoussova, and Hanostaffella hanensis Cheong. Such fusulinids species were reported from the lower part of the Geumcheon Formation in Samcheok coalfield and the middle Moscovian stage in Eurasia. On the basis of the fusulinid biostratigraphic correlation of the Gangdong geologic sections (A) to (C), the limestone should be overlapped by faults and folds. Moreover the stratigraphic thickness of the limestone is thinner than the thickness of the limestone outcrop of the Gangdong geologic section. Therefore, the stratigraphic sequence of the Gangdong geologic section is represented as the Gangdong geologic section (A).

Conodont Fauna and Its Paleoecology of the Middle Carboniferous System in Taebaek Area, Gangwon, Korea (강원도 태백 지역의 중기 석탄계의 코노돈트와 고생태)

  • Park, Soo-In;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.337-348
    • /
    • 2000
  • The Middle Carboniferous Manhang and Geumcheon formations in Taebaek area consist of sandstones, shales, and limestones. The limestones of the formations contain abundant conodonts, fusulinids, crinoids, brachiopods, bryozoans, corals, etc. This study was carried out to investigate the microfacies of limestones and conodont faunas of the formations and to determine their paleoecology in detail. The limestones of the Manhang and Geumcheon formations of the study area consist of wackestone and packstone which are composed of crinoid fragments and other various fossil fragments. Some limestone beds of the Geumcheon Formation consist of only Chaetetes corals which indicate that the limestones deposited in a warm shallow sea. Conodonts found from limestones of the Manhang Formation are Neognathodus bothrops, N. medexultimus, Hindeodus minutus, Diplognathodus coloradoensis, D. edentulus, Idiognathodus delicatus, Streptognathodus elegantulus, and S. sp. And conodonts found from the limestones of the Geumcheon Formation are Neognathodus medexultimus, N. roundyi, N. dilatus, Gondolella bella, Diplognathodus coloradoensis, D. edentulus, Hindeodus minutus, Idiognathodus delicatus, and Streptognathodus elegantulus. Among these conodonts, Diplognathodus coloradoensis, D. edentulus, and Hindeodus minutu, are found generally from limestones which deposited in the shallow seas. According to the limestone facies and conodont faunas of the Manhang and Geumcheon formations of the study area, it can be concluded that the limestones of the formations deposited in the shallow sea.

  • PDF

The Vegetational and Environmental History of the Pre-Holocene Period in the Korean Peninsula (한반도 식생 및 환경변천사(홀로세 이전 시대를 중심으로))

  • Kong, Woo-Seok
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1992
  • The reconstruction of the vegetational and environmental history of the Korean peninsula by the use of various fossil floral data from the Carboniferous period to the Pre-Holocene is reviewed. Though the oldest plant fossil in Korea (Neuropteris) dates back to the Carboniferous period, the first appearance of many of the present-day floristic genera indeed dates back to the Oligocene (c. 40 to 20 million years B.P.), and includes many thermophilous genera. The presence of thermophilous genera in the Oligocene at up to four degrees north of their present distributional limits implies that the climate of the Oligocene was warmer than that of today. The occurrence of similar thermophilous floristic element at up to six degrees north of their present range during the Middle Miocene suggests a maximum northward expansion of warmth-loving evergreen broadleaved vegetation for, recent Korean vegetation history. The continued occurrence of numerous present-day genera since the Oligocene period indicates a long-term stability of Korean vegetation, along with minor fluctuations within it. The admixture of evergreen coniferous plants and deciduous breadleaved plants, however, indicates a probable temperate climate for much of the Middle Pleistocene. There are couple of evidences which are indicative of an early-stage anthropogenic disturbance of natural vegetation during the Middle Pleistocene of Korea. The presence of cold-episodes during the Upper Pleistocene caused a general expansion of deciduous plants and cryophilous evergreen coniferous, plants. It is likely that the maximum southward expansion of cryophilous arctic-alpine and alpine floras in Korea occured during the penultimate glacial period. The disappearance of some cryophilous genera from 10,000 years B.P. marks the continued climatic amelioration since then, along with minor climatic fluctuations during the Holocene period.

  • PDF

Detrital zircon U-Pb Ages of the Metapelite on the Southwestern Part of the Ogcheon Belt and Its Stratigraphical Implication (옥천대 남서부 지역 저변성퇴적암의 SHRIMP U-Pb 저어콘 연대와 층서적 의미)

  • Choi, Sung-Ja;Kim, Dong-Yeon;Cho, Deung-Lyong;Kim, You Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • We investigated the zircon U-Pb ages of the metapelites from the Sungjeon-myeon Gangjin-gun, the southwestern Ogcheon belt, to provide geochronological constraints for the depositional age as well as the distribution of Late Paleozoic formation. Data from the detrital zircons are mostly concordant, yielding four major age groups: (1) Neoarchean (~2.5 Ga); (2) Paleoproterozoic (~1.86 Ga, Statherian); (3) Middle Devonian(~390 Ma); and (4) Late Paleozoic (~322 Ma, Serpukhobian). The youngest zircon age gives a weighted mean $^{206}Pb/^{238}U$ age of $322{\pm}4.8$ Ma (n=16, MSWD=4.9), indicating deposition age of Early Carboniferous(Serpukhobian) or after. Therefore, the metapelites is considered to be the lowest Formation of the late Paleozoic Pyeongan Supergroup correlated with the Manhang Formation of the Samcheock coal fields and the Oeumri Formation(the Middle to Late Carboniferous) of the Hwasun coal field.

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: I. Stratigraphy and Structure (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: I. 층서 및 구조)

  • Kim In-Joon;Kee Won-Seo;Song Kyo-Young;Kim Bok-Ghul;Lee Sa-Ro;Lee Gyoo Ho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.437-457
    • /
    • 2004
  • The geology of the Kualakulun in the Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Tanjung Formation was deposited in low-and high-sinuosity channel networks developed on the proximal to distal delta plain and delta front forming southward paleoflow system, which, in turn, gradually change into shallow marine environment. Four main deformational phases are recognized: D1, folding of metamorphic rocks accompanied by development of S1 schistosity under regional metamorphic condition; D2, ductile shearing in Cretaceous granitoids; D3, folding of metamorphic rocks accompanied by S2 crenulation cleavage; D4, faulting under N-S compressional regime during Tertiary times, producing NE-trending sinistral and NW-trending dextral strike-slip faults and N-S to NNE-trending normal faults.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Middle Carboniferous Yobong Formation in the Northern Part of Yeongwoleup, Kangwon, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 영월읍 북부 지역의 중기 석탄기 요봉층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • The Middle Carboniferous Yobong Formation with North-South trending is distributed in the Yeongheungri and Samokri of Yeongwoleup, Kangwon Province, Korea. A light gray thick and massive pure limestone is developed in the middle part of the Yobong Formation and it has been exploited for a long time. This study was carried out to investigate the lithological characteristics and geochemical compositions of the limestones and to figure out how geologic structures control the disribution of the limestones of the formation. The limestones of the Yobong formation are characterized by the fine and dense textures and the light gray to light brown in color. The limestones are composed of crinoid fragments, small foraminifers, fusulinids, gastropods, ostracods, etc. Based on the amount of grains and matrix, the Yobong Limestone can be classified as fine packstones and wackestones. The chemical analysis of limestones of the Yobong Formation was carried out to measure the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 48.12 to 59.31% and its average is about 54.52%. The average content of MgO is about 0.32% and the coutents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are relatively low. The amounts of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ of the limestones vary according to the kinds of limestone and their stratigraphical horizons in the formation. Generally, the CaO content of the limestones of the Yobong Formation decreases towards the top of the formation. Using geometric and structural analysis, we determined five progressively overprinted phases of deformation recorded in the study area. The anticline and syncline formed during the first and fourth deformation had controlled the distribution pattern of the Yobong Limestone of the Yobong Formation. The structures of deformation D$_1$ consist of F$_1$ isoclinal folds and foliations. The D$_2$ deformation had formed the isoclinal interstratal F$_2$ folds and axial plane cleavages which are locally developed within mudstones. The structural elements of deformation D$_3$ are axial plane cleavages associated with recumbent F$_3$ folds. These structures are overprinted by meso-scale and regional F$_4$ folds which are regionally dominant. Finally, the structures of D$_5$ consist of the thrust faults and folds associated with the thrust faults.

  • PDF

Genesis of the REE Ore Deposits, Chungju District, Korea: Occurrence Features and Geochemical Characteristics (충주지역 희토류 광상의 성인: 산출상태와 지화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.599-612
    • /
    • 1995
  • Some REE ore deposits are located in the middle part the of Korean peninsula. Geotectonically, the REE ore deposits situated on the Kyemyeongsan Formation of northern margin of the Okcheon geosynclinal belt and in the transitional zone between Kyeonggi massif and the Okcheon belt, with a deep-seated fracture separating the two tectonic units. The Kyemyeongsan Formation are different in lithology and metamorphic grade from the Gyeonggi massif and the Okcheon super group. The sequence of Kyemyeongsan Formation is dominantly composed of acidic metavolcanic and volcaniclastic rocks associated with alkaline igneous rocks which are related to volcano-plutonism. The REE ore deposits contain mainly Ce-La, Ta-Nb, Y, Y-Nd and Nd-Th group minerals. More than 15 RE and REE minerals have been found in the deposits, such as allanite, fergusonite, thorite bestnaesite, euxenite, polyclase, monazite, columbite, (Nb)-rutile, okanoganite, sphene, zircon, illmenite and some other unknown minerals. According to the characteristics of the mineral association, the REE ore deposits may be divided into 4 ore types; Zircon-REE, allanite-REE, feldspar-REE and fluorite-REE type. The Sm-Nd isochron age of the REE ore is 330 Ma, and the Sm-Nd model age is 1.11 Ga with ${\varepsilon}_{Nd(t)}$ being - 2.9. This data suggest that the REE ore deposit was formed in the early Carboniferous, and the ore-forming material came from the mantle. The REE ores show distinct light REE enrichment with strong negative Eu anomaly. The REE patterns of schistose rocks from Kyemyeongsan Formation are similar to felsic volcanics from rifts or back arc basins in or near continental crust. The genesis of the REE ore deposit is quite complicated. Different geologic processes are displayed in the studied area; sedimentation, volcanic activity, metamorphism and hydrothermal replacement. Alkali granite has suffered extensive post-magmatic metasomatism of a high temperature to produce alkali metasomatites. Geochemical charateristics show that metasomatism of alkaline fluid was probably the dominant ore-forming process in Chungju district.

  • PDF

Occurrence of Gold Deposits of the Tumbang Lapan Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 뚬방라판 지역 금광상의 산상)

  • Kim In-Joon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.347-353
    • /
    • 2005
  • The geology of the Tumbang Lapan area consists of Permian to Carboniferous metamorphic rocks, Cretaceous granitic rocks, and Permian to Tertiary sedimentary and volcanic rocks. Three faults are developed in surveyed area, and are functioned as channels of the hydrothermal solution which farmed quartz veins within tuff3. In the mineralized area, argillic and propylitic alterations are dominant. Argillic altered rocks show the alteration mineral assemblages of kaolinte+sericite+quartz+chlorite+pyrite. Mineral association in propylitic alteration is chlorite+epidote+feldspar+quartz+pyrite+ magnetite. Vein type, fracture filling, stockwork are observed in survey area. As a result of analysis of samples from quartz veins and altered rocks, some mineralized rocks showed $0.01\~4.6g/t$ of gold.

Occurrence of Placer Gold Deposits from the Takaoi Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 따까오이 지역 사금광상의 산출상태)

  • Kim In-Joon;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.191-212
    • /
    • 2006
  • Placer gold deposits is mainly distributed in the Takaoi area. The alluvium is unconsolidated or semiconsolidated deposit consisting of gravel, sand, and soil beds in ascending order. They unconformably overlies the Carboniferous-Permian schist and Cretaceous granodiorite substratum. Based on detailed facies analysis, the alluvium can be interpreted as a typical fluvial deposits containing gravel and sand beds of channel-fill unit and soil deposit of floodplain. Gold grains are included mainly in the gravel bed and vein quartz is only contained gold among all kinds of gravels. These features indicates that the source rock of the gold grain is vein quartz and gold grains are separated from vein quartz during transport and abrasion. The reserves of gold in this area reach to at least 792 kg.