• Title/Summary/Keyword: Mid-term forecast

Search Result 32, Processing Time 0.03 seconds

Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm (서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선)

  • Ji-Young Kim;Ho-Yeop Lee;In-Seon Suh;Da-Jeong Park;Keum-Seok Kang
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

Development of a mid-term preceding observation model for radish (무의 중기 선행관측모형 개발)

  • Cho, Jae-Hwan;Lee, Han-Sung
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.571-581
    • /
    • 2011
  • This study develops a mid-term preceding observation model of radish to complement an existing short-term agricultural observation model. The first purpose of the study is to extend a three seasonal classification(spring, summer, fall) of fruit-vegetables to a four seasonal classification that involves the winter additionally. This allows us to verify the reason for demand and supply unbalance and unstable price of radish. The second purpose is to construct a mid-term preceding observation model that would be used to forecast planted areas, output, monthly shipment and price. To achieve these purposes, several multiple regression models are estimated. A system is consisted of a planted areas equation, a yield equation, monthly shipment distribution equation, and monthly price equation. To calculate output an auxiliary equation is involved in the system and the consumer price index etc are considered as exogenous variables.

Long-term Streamflow Prediction Using ESP and RDAPS Model (ESP와 RDAPS 수치예보를 이용한 장기유량예측)

  • Lee, Sang-Jin;Jeong, Chang-Sam;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.967-974
    • /
    • 2011
  • Based on daily time series from RDAPS numerical weather forecast, Streamflow prediction was simulated and the result of ESP analysis was implemented considering quantitative mid- and long-term forecast to compare the results and review applicability. The result of ESP, ESP considering quantitative weather forecast, and flow forecast from RDAPS numerical weather forecast were compared and analyzed with average observed streamflow in Guem River Basin. Through this process, the improvement effect per method was estimated. The result of ESP considering weather information was satisfactory relatively based on long-term flow forecast simulation result. Discrepancy ratio analysis for estimating accuracy of probability forecast had similar result. It is expected to simulate more accurate flow forecast for RDAPS numerical weather forecast with improved daily scenario including time resolution, which is able to accumulate 3 hours rainfall or continuous simulation estimation.

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

Supply-Demand Forecast and Development Direction for Aggregate (골재의 수급 전망 및 개발 방향)

  • Kang, Ki-Woong;Choi, Sun-Mi;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.332-333
    • /
    • 2018
  • The master plan for aggregate supply and demand aims to ensure the feasibility viability of mid/long-term aggregate supply and demand by establishing comprehensive plans for regional groups and aggregate types. In addition, It will propose ways to reduce the environmental impact of the development of aggregates and to stabilize aggregate supply and demand across the country. Also, it will seek to promote the stable development of the construction industry through policy and related amendments.

  • PDF

A Review of the Changes on the Population Structure in Rural Area (농촌지역 인구구조 변화의 방향과 성격 -농촌지역 인구구조 및 외국인 인구 변화추이 전망-)

  • Kim, Bae-Sung;Choi, Se-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.3
    • /
    • pp.291-307
    • /
    • 2007
  • The objective of this article is to examine the structure of the composition of the population in rural area for the last 45 years, and to forecast mid and long term structure of the population in the near future. Moreover, forecast has been done whether the rapid increase by the inflow of foreigners has any offset on the structural change in rural population. According to the research result, the rural area is experiencing a rapid decrease in population, a rapid increase in the percentage of the aged, and foreigners. To resolve the problematic situation mentioned above, some effective counterplan has to be considered by all agencies concerned.

  • PDF

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

Midterm Assessment on Forecasting Study of Korean Traditional Medicine(2000${\sim}$2010) (한의약 미래예측(2000년${\sim}$2010년) 과제 중간 평가 연구)

  • Lee, Kyung-Goo;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.42-50
    • /
    • 2007
  • Objectives . This study was to assess the Korean Traditional Medicine forecast subjects that had been expected to be accomplished by 2005. The result will help the Korean medical society plan far policies and studies on Korean Traditional Medicine. Methods : Assessed targets were 64 subjects (expected to be studied until 2005) of the total 93 subjects from the 'Mid- to Long-Term Forecast and Plan Study for Korean Traditional Medicine'. The subjects were classified into two types : political subjects and research and development (R&D) subjects. These were determined by the quantity and contents of related political reports, political research projects, thesis, patent, placing products on sale, etc. Results :1) 5 items of a total 12 political subjects were accomplished or partially accomplished (41.7%), and 9 items of a total 46 R&D subjects were accomplished or partially accomplished (9.5%). 2) While the accomplishment percentage (accomplished or partial accomplished) in literature arrangement and D/B construction field was 100%, it was under 10% in product or system development field. Thus, it seems that practical subjects were less accomplished than academic subjects. 3) On 8 subjects of 'Forecast Research on Future of Oriental Medicine' which had been performed in Japan, the Korean expected dates when the subjects would be realized were earlier than the Japanese ones, but no subjects were realized. Conclusion · Political and academic subjects weir accomplished more than R&D and practical subjects.

  • PDF

Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting (확률기상예보를 이용한 중장기 ESP기법 개선)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.843-851
    • /
    • 2011
  • In hydrology, it is appropriate to use probabilistic method for forecasting mid/long term streamflow due to the uncertainty of input data. Through this study, it is expanded mid/long term forecasting system more effectively adding priory process function based on PDF-ratio method to the RRFS-ESP system for Guem River Basin. For implementing this purpose, weight is estimated using probabilistic weather forecasting information from KMA. Based on these results, ESP probability is updated per scenario. Through the estimated result per method, the average forecast score using ESP method is higher than that of naive forecasting and it confirmed that ESP method results in appropriate score for RRFS-ESP system. It is also shown that the score of ESP method applying revised inflow scenario using probabilistic weather forecasting is higher than that of ESP method. As a results, it will be improved the accuracy of forecasting using probabilistic weather forecasting.