• Title/Summary/Keyword: Microwave surface treatment

Search Result 56, Processing Time 0.023 seconds

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Effects of Pre-treatment Method on the Surface Microbes of Radish (Raphanus sativus L.) leaves (전처리 방법이 무청의 표면 미생물 변화에 미치는 영향)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Kim, Young-Lim;Lee, Myung-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.649-654
    • /
    • 2006
  • It was investigated the effects of pre-treatment method on the microbes on the surface of radish (Raphanus sativus L.) leaves. Independent variables put in water washing ($X_1$), microwave treatment ($X_2$) and steam treatment ($X_3$) using central composite design and response surface analysis. It was not detected in the pathogenic microbes, Samonella spp., Camphylobacter spp., Vibrio spp., Shigella spp., Staphyloccocus spp., on the surface of collected radish leaves without pre-treatment. But general microbes showed $3.90{\times}10^5{\sim}1.20{\times}10^7CFU/g$ of total microbes, $1.10{\times}10^2{\sim}2.00{\times}10^5CFU/g$ of E. coli, $2.40{\times}10^3{\sim}3.55{\times}10^6CFU/g$ of yeast/mold on the surface of various radish leaves and lactic acid bacteria was detected or not according to collected samples. The best method of pre-treatment was steam treatment on the microbe reduction effect of samples surface. Also, the multiplex regression coefficients analysis was calculated three independent variables ($X_1,\;X_2,\;X_3$) and dependent variables (total microbes, lactic acid bacteria and yeast/molds). It showed high correlation $R^2$, 0.89, 0.87, 0.85, respectively. For effective reduction of surface microbes, the best method was water washing with microwave or steam treatment at the same time.

Preparation and Characterization of Surface Modified Mica by Microwave-enhanced Wet Etching (마이크로웨이브로 증폭된 습식 에칭에 의한 표면 개질 마이카의 제조와 특성)

  • Jeon, Sang-Hoon;Kwon, Sun-Sang;Kim, Duck-Hee;Shim, Min-Kyung;Choi, Young-Jin;Han, Sang-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • In this study we successfully altered the structural characteristics of the mica surface and were able to control oil-absorption by using the microwave enhanced etching (MEE) technique, which has originally been used in semiconductor industry. When microwave energy is applied to the mica, the surface of the mica is etched in a few minutes. As the result of etching, oil-absorption of the mica was enhanced and surface whiteness was improved by modifying the silicon dioxide layer. Additionally, the high whiteness was maintained even though the etched mica absorbed the sebum or sweat. The surface modification of mica was performed by microwave irradiation after the treatment of hydrofluoric acid. The degree of etching was regulated by acid concentration, irradiation time, the amount of energy and slurry concentration. The surface morphology of the etched mica appears to be the shape of the 'Moon'. The characteristics of surface area and roughness were examined by Brunauer-Emmett-Teller (BET) surface area analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM), spectrophotometer and goniophotometer.

Surface Modification with Atmospheric Microwave Agron Plasma Jet Assisted with Admixture of H2O2 and Analysis of Plasma Characteristics

  • Won, I.H.;Shin, H.K.;Kwon, H.C.;Kim, H.Y.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.544-545
    • /
    • 2013
  • Recently, low-temperature atmospheric-pressure plasmas have been investigated [1,2] for biomedical applications and surface treatments. Experiments for improving hydrophilicity of stainless steel (SUS 304) plate with atmospheric microwave argon and H2O2 mixture plasma jet [3] were carried out and experimental measurements and plasma simulations were conducted for investigating the characteristics of plasma for the process. After 30 s of low power (under 10 W) and low temperature (under $50^{\circ}C$) plasma treatment, the water contact angle decreased rapidly to around $10^{\circ}$ from $75^{\circ}$ and was maintained under $30^{\circ}$ for a day (24 hours). The surface free energy, calculated from the contact angles, increased. The chemical properties of the surface were examined by X-ray Photoelectron Spectroscopy (XPS) and the surface morphology and roughness were examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. The characteristics of plasma sources with several frequencies were investigated by Optical Emission Spectroscopy (OES) measurement and one-dimensional Particle-in-Cell (PIC) simulation and zero-dimensional global simulation [4]. The relation between plasma components and the efficacy of the surface modification were discussed.

  • PDF

EFFECT OF SUBSTRATE BIAS ON THE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.303-306
    • /
    • 1999
  • On the effect of substrate bias at first stage of diamond synthesis at lower substrate temperature(approximately 673K) using microwave plasma CVD and effect of reaction gas system for the bias enhanced nucleation were studied. The reaction gas was mixture of methane and hydrogen or carbon monoxide and hydrogen. The nucleation density of applied bias -150V using $CH_4-H_2$ reaction gas system, significantly higher than that of $C-H_2$ reaction gas system. When the $CH_4-H_2$ reaction was used, nucleation density was increased because of existence of SiC as a interface for diamond nucleation. By use of this negative bias effect for fabrication of CVD diamond film using two-step diamond growth without pre-treatment, fabrication of the diamond film consist of diamond grains $0.2\mu\textrm{m}$ in diameter was demonstrated

  • PDF

Effect of Hydrogen Plasma Treatment on the Photoconductivity of Free-standing Diamond Film (다이아몬드막의 광전도성에 관한 수소 플라즈마 표면 처리의 효과)

  • Sung-Hoon, Kim
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.337-350
    • /
    • 1999
  • Thick diamond film having ~700${\mu}{\textrm}{m}$ thickness was deposited on polycrystalline molybdenum (Mo) substrate using high power (4kW) microwave plasma enhanced chemical vapor deposition (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconductivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Effect of hydrogen plasma treatment on the photoconductivity of free-standing diamond film

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.441-445
    • /
    • 1999
  • Thick diamond film having $~700\mu\textrm{m}$ thickness was deposited on polycrystalline molybdenum(Mo) substrate using high power (4 kW) microwave plasma-enhanced chemical vapor depostion (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconcuctivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Characteristics of Microwave-assisted Extraction for Catechins from Grape Seed (포도씨 카테킨류의 마이크로웨이브 추출특성)

  • Lee, Eun-Jin;Choi, Sang-Won;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.510-515
    • /
    • 2008
  • Microwave energy was applied to the extraction of functional catechins from grape seed. The solvent, absolute ethanol, reached the boiling point when exposed for less than 3 min microwave treatment at 100 W. The effects of independent variables in microwave-assisted extraction (MAE), including microwave power (0-160W, $X_1$), ethanol concentration (0-100%, $X_2$) and extraction time (1-5 min, $X_3$), were investigated on each response variable ($Y_n$), and the contents of catechin and its derivatives were determined via response surface methodology, thereby allowing us to predict their optimal extraction conditions. The predicted maximal values of (+)-catechin, procyanidin $B_2$, (-)-epicatechin, and (-)-epicatechin gallate were 137.99, 72.78, 222.38, and 9.59 mg%, respectively, under different MAE conditions. The predicted extraction conditions for maximum catechin responses were as follows: 104.10 W of microwave power, 45.35% of EtOH, and 4.89 min of extraction time for (+)-catechin (137.99 mg%), 133.16 W, 46.16% and 4.49 min for procyanidin $B_2$ (72.78 mg%), 136.00 W, 41.37% and 4.39 min for (-)-epicatechin (222.38 mg%), 143.20 W, 37.51% and 1.88 min for (-)-epicatechin gallate (9.59 mg%), respectively. The contents of (+)-catechin, procyanidin 1B2 and (-)-epicatechin in MAE were similarly influenced by three independent variables, whereas (-)-epicatechin gallate was influenced less profoundly by ethanol concentration and extraction time.

Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD (마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과)

  • Kim, In-Sup;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.