• Title/Summary/Keyword: Microwave sensor

Search Result 123, Processing Time 0.029 seconds

Development of Energy Saving System Using the Microwave Sensor (마이크로웨이브 센서를 이용한 에너지 절약시스템 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.404-407
    • /
    • 2008
  • Because of directly receiving the thing in which a microwave is reflected and comparing the frequency, the microwave sensor with doppler effect completely overcomes the problem of the passive infrared sensor. The microwave sensor with doppler effect well operates about a temperature, the dust, and the peripheral noise because of being dull in the most of ambient conditions. The system developed in this research is the electricity saving detection sensor which it senses the real time action of a man as the microwave sensor and automatically turns on the electric lamp and turns off, minimizes the electrical energy consumption. Since the microwave sensor is not influenced in the light, the dust, and the natural element like the ambient temperature, the effectiveness is considered to be superior to the passive infrared sensor being used currently. There was the energy reduction effect more than about 60% in the performed example which established this system. When this was compared with the construction cost, the cost of establishing payback period was about 1-1.5 year. The microwave sensor with doppler effect developed from this research result is convinced in the future to do enough for the electric energy saving.

Implementation of a Microwave Doppler Sensor (도플러 효과를 이용한 마이크로파 센서의 구현)

  • Kim, Tae-Jin;Rhee, Young-Chul;Kim, Sun-Hyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • In this paper, Microwave doppler radar sensor operated in 10.525GHz is designed by dielectric resonant oscillator. According to doppler effects, a characteristic of Microwave sensor with FMCW was analyzed. The qualities of objects velocity and distance between object and microwave sensor by sensor output frequency difference was measured. As a result of Microwave doppler radar sensor, the prototype sensor is available for indoor burglar alarms and other application through FMCW signal.

  • PDF

A Study on a Human Body Detection Sensor Using Microwave Radiometer Technologies (마이크로파 라디오미터 기술을 응용한 인체 감지 센서에 관한 연구)

  • Son, Hong-Min;Park, Hong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.333-340
    • /
    • 2015
  • In this paper, we propose a passive microwave sensor for detecting human body using microwave radiometer technologies. The proposed sensor detects human body by measuring the change of the received radiation power from fixed background object due to human body. A C-band microwave radiometer is designed and implemented. The received radiation power changes due to human body is measured by the C-band microwave radiometer, and the effectiveness of the proposed sensor is evaluated by the measurement result analysis.

Development of Simple Structure Microwave Sensor (구조가 간단한 마이크로파 센서 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.270-274
    • /
    • 2008
  • The microwave sensor in which the sensitivity was excellent and a structure is simple was developed and it manufactured. And the sensing range that uses the developed product was confirmed. When the developed microwave sensor was set up in the ceiling of a building, we confirmed that the amplitude of the sensitive area increased as the tilting angle was enlarged. The sensitive area became a greatest in case the tilting angle was 65 degree. According to the height of a ceiling, because the sensing range is determined, in case of using in the building in which the height of a ceiling is enough secured it is determined to secure the more wide sensitive area. Moreover, the configuration of the circuit having the simple structure makes the miniaturization of a product, and the light weight possible. It is considered to have the price competitive power which it reduces the manufacturing cost, is sufficient.

Implementation of A Dielectric-Resonator Oscillator for the Microwave Radar Sensor Applications (마이크로파 레이더 센서 응용을 위한 발진기 설계 및 제작)

  • Kim, Kang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.185-190
    • /
    • 2003
  • Recently, sensors which use the infrared light, supersonic waves, and electromagnetic waves have been used for many applications to detect information of the object. For these sensors, the accompanying system which utilizes the sensor should be systematically developed. In this paper, a general microwave radar sensor system is briefly described, and then basic applications of a CW doppler radar sensor system are introduced. For the CW doppler radar sensor applications, a highly-stable, low-cost Dielectric Resonator Oscillator (DRO) has also been designed and implemented, which can be used for commercial microwave sensor systems. The implemented DRO has output power of +5.33 dBm at 12.67 GHz and phase noise of -108.5 dBc/Hz at the 100 kHz offset frequency.

Design and Implementation of the Small Size Microwave Sensor Receiver for Human Body Detection (인체 감지용 소형 마이크로파 센서 수신기의 설계 및 제작)

  • Son, Hong-Min;Choi, Hyun-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.403-406
    • /
    • 2016
  • This paper presents the design and implementation of the small size receiver to put a passive microwave sensor for human body detection to practical use. The requirements and specifications of the sensor receiver are drawn using the experimental data of human body detection by the existing sensor operated at 5.1 GHz. The small size sensor receiver to satisfy the drawn specifications is designed and implemented. The effectiveness of the fabricated sensor with small size receiver on human body detection is demonstrated experimentally in laboratory. The results show the sensor can detect human body to within 4 m distance from the antenna. The size and power consumption of the small size receiver are decreased to 60 % and 40 % compared to those of the existing receiver, respectively.

A CMOS Compatible Micromachined Microwave Power Sensor (CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol (폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서)

  • Yeo, Junho;Kwon, Younghwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.627-632
    • /
    • 2020
  • In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.

Microwave Characteristics of Barium Titanate for Frequency Sensor and Temperature Sensor (고주파특성 측정을 통한 barium titanate의 주파수센서 및 온도센서 연구)

  • Kim, J.O.;Han, M.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1996
  • The effect on the microwave properties was investigated for the barium titanate doped with impurity of $WO_{3}$ 0.230 mole% produced by conventional solid state reaction method. Microwave resistance, reactance and impedance of the barium titanate were measured with 2-port s-parameter method by using network analyzer, in the range of room temperature to $160^{\circ}C$ and of frequency 300 kHz to 300 MHz. And possibility of frequency sensor and temperature sensor was estimated with barium titanate doped with $WO_{3}$.

  • PDF

Agricultural drought monitoring using optical sensor-based soil moisture (광학센서 기반의 토양수분을 이용한 농업적 가뭄 감시)

  • Sur, Chan Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.296-296
    • /
    • 2022
  • 농업적 가뭄은 토양의 수분함량(토양수분)이 마르기 시작하면서 식생 활동에 영향을 주는 것으로 정의할 수 있다. 광범위한 농업적 가뭄을 판별하기 위해 인공위성 자료를 토대로 토양수분을 산정하고 이를 이용해 가뭄지수를 산정하고, 가뭄 상태를 판별한다. 기존 인공위성 기반의 토양수분의 경우, microwave sensor에서 제공되는 밝기온도(brightness temperature)를 통해 토양수분을 추정하는 방식이 일반적으로 활용되었다. 하지만, microwave sensor에서 제공되는 자료들의 공간해상도가 10 km 이상이기 때문에, 한반도나 더 작게는 유역 단위, 행정 단위별 가뭄 분석을 하기에는 적합하지 않다. 이에 본 연구에서는 공간 해상도 500m의 광학센서(visible infrared imaging radiometer suite sensor (VIIRS))에서 제공되는 지표면 온도(land surface temperature)와 지표 반사도(land surface albedo) 자료들을 조합하여 토양수분을 산정하는 방식을 제안하고, 산출된 토양수분으로 농업적 가뭄을 모니터링한 결과를 제시하고자 한다. 기존의 microwave sensor로 산출된 토양수분 결과 값과의 비교 및 검증을 통해 광학센서를 통한 토양수분 산출물의 한반도 내 적용성을 확인할 수 있다.

  • PDF