• Title/Summary/Keyword: Microwave heating

Search Result 395, Processing Time 0.029 seconds

Changes in Physico-chemical Properties of Potato Starch by Microwave Heating Methods (마이크로파 가열방법에 따른 감자전분의 이화학적 특성변화)

  • Choi, Ock-Ja;Koh, Moo-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.461-467
    • /
    • 1993
  • The purpose of this study was to investigate the physico-chemical properties of potato starch heated with microwave. Two types of potato starches are prepared; in group A raw potato starch was heated with microwave and in group B potato starch was isolated from potato heated with microwave. Both groups were exposed to the microwave energy in a 560 W, 2,450 MHz oven for 60, 120, 180 and 300 seconds. As the microwave heating time took longer, free lipid decreased and bound lipid increased in both groups. The shape of starch granules, birefrigence and X-ray diffraction pattern were not changed much by microwave heating in both groups. Water binding capacity increased, but amylose content, swelling power and solubility decreased as the microwave heating time took longer. It was also found that the extent of decreases in swelling power and solubility were different between group A and group B.

  • PDF

Study on the Application of Microwave-heating System to Manufacturing Bent-wood Furniture(III) - Effect of wood moisture content on bending processing by microwave-heating - (국산재(國産材) 묘목가구(苗木家具) 제조(製造)를 위한 Microwave-heating system 활용(活用)에 관한 연구(硏究)(III) - 목재(木材) 함수율(含水率)이 microwave휨가공성에 미치는 영향(影響) -)

  • So, Won-Tek
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.502-508
    • /
    • 1997
  • Black locust(Robina pseudo-acacia L.) and hornbeam trees(Carpinus laxiflora BL.) are widely growing in Korea and have relatively good wood qualities. However, they have seldom been used as industrial materials. This study was carried out to investigate the effect of wood moisture content on microwave-bending processing. The bending processing of the both species are improved as the increase of wood moisture from 30% to green, and the maximum limit of wood moiture content is 50%. The minimum solid-bending radii of black locust and hornbeam green wood were 60mm and 40mm for micro-wave bending, respectively. In conclusion, the microwave-heated green wood showed very good bending processing properties for bent-wood furniture.

  • PDF

Synthesis of Periodic Mesoporous Organosilica by Microwave Heating

  • Yoon, Sang-Soon;Son, Won-Jin;Biswas, Kalidas;Ahn, Wha-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.609-614
    • /
    • 2008
  • A periodic mesoporous organosilica material was synthesized by microwave heating (PMO-M) using 1,2-bis(trimethoxysilyl)ethane as a precursor in a cationic surfactant solution, and textural properties were compared with those of the product produced by conventional convection heating (PMO-C). These synthesized materials were characterized using XRD, TEM/SEM, N2 adsorption isotherm, 29Si and 13C NMR, and TGA, which confirmed their good structural orders and clear arrangements of uniform 3D-channels. Synthesis time was reduced from 21 h in PMO-C to 2-4 h in PMO-M. PMO-M was made of spherical particles of 1.5-2.2 m m size, whereas PMO-C was made of decaoctahedron-shaped particles of ca. 8.0 m m size. Effect of synthesis temperature, time, and heating mode on the PMO particle morphology was examined. The particle size of PMO-M could be controlled by changing the heating rate by adjusting microwave power level. PMO-M demonstrated improved separation of selected organic compounds compared to PMO-C in a reversed phase HPLC experiment. Ti-grafted PMO-M also resulted in higher conversion in liquid phase cyclohexene epoxidation than by Ti-PMO-C.

Study on the microwave heating on kevlar fiber-bonding using Polyvinylidene floride(PVDF) (Polyvinylidene floride(PVDF)를 이용한 케블라 섬유접착에 마이크로웨이브에 관한 연구)

  • Young-Soo Lee;Jin-Ah Lee;Chang-Whan Joo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.403-404
    • /
    • 2001
  • In conventional heating, the heat source causes the molecules to react from the surface toward the center so that successive layers of molecules heat in turn. In the microwave heating, which is produced a volume heating effect, all molecules are set in action at the same time. And, It also evens temperature gradients without the concern of material thickness. (omitted)

  • PDF

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation

  • Dewantari, Aulia;Jeon, Se-Yeon;Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Computer simulations were conducted to demonstrate the generation of microwave-induced thermoacoustic signal. The simulations began with modelling an object with a biological tissue characteristic and irradiating it with a microwave pulse. The time-varying heating function data at every particular point on the illuminated object were obtained from absorbed electric field data from the simulation result. The thermoacoustic signal received at a point transducer at a particular distance from the object was generated by applying heating function data to the thermoacoustic equation. These simulations can be used as a foundation for understanding how thermoacoustic signal is generated and can be applied as a basis for thermoacoustic imaging simulations and experiments in future research.

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids

  • An, Gwangmin;Kim, Young Min;Koo, Yoon-Mo;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at $50^{\circ}C$.

Characteristics of Alumina Particles Synthesized by Microwave Heating (마이크로파 가열에 의하여 합성된 알루미나 입자의 특성)

  • Kim, Sung-Wan;Lee, Sung-Hwan;Park, Jae-Hyun;Kim, Jun-Ho;Park, Seong-Soo;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.1007-1010
    • /
    • 2002
  • Alpha alumina platelet particles were synthesized from the powder mixture of ${\gamma}-Al_2O_3and\;Na_2SO_4$ with the use of microwave heating. The characteristics of the particles such as particle size and particle size distribution were compared with those of particles obtained from the same mixture without the use of microwave. Sample with the use of microwave showed small particle size and narrow particle size distribution compared to that without the use of microwave.

Treatment Cost Comparison and Development of Sustainability Indices for Microwave Soil Remediation of TPHs(Total Petroleum Hydrocarbons)

  • Kim, Dong Uk;Koo, Ja-Kong
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.11-15
    • /
    • 2015
  • The three processes of 1) high- & low-temperature microwave heatings, 2) the soil washing, and 3) the thermal desorption processes in soil remediation are analysed on the treatment cost data for 2003-2012 years. The cost of microwave heating method with at temperature 500-700℃, for 30 minutes, and at 4-6 kW is approximately 10 $/ton (13,000 ₩) due to the deep through heating of micro-wave, the soil washing with chemicals is about 80 $/ton (85,000 ₩) due to the chemicals & duration, and the thermal desorption process is around 40 $/ton (41,000 ₩) from the less efficiency. Furthermore the sustainability has been assessed, and suggestions are made. 1) Green; the minimal environmental footprint, 2) Growth; the least cost, 3) Shared; the social & environmental justice, 4) Smart; the microwave characteristics of deep through irradiation & heating, and 5) Mutuality; the flexibility of the technology. More additives including water, the government support, and public relation are suggested realizing the microwave in this condition is not harmful to human beings.

RABBIT HEATING BY MICROWAVE EXPOSURE AT VARIOUS AMBIENT TEMPERATURES

  • Kolganova, Olga I.;Zhavoronkov, Leonid P.;Petin, Vladislav G.;Kim, Jin-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.99-104
    • /
    • 2010
  • The potential ability of environmental temperature to enhance the effect of microwave radiation (7 GHz) was experimentally studied for rabbit heating after simultaneous application of both agents. The tested ambient temperatures (30 and $38^{\circ}C$) didn't exert a considerable influence upon rabbit heat homeostasis after the used duration of exposure (3 hours and 15 minutes, correspondingly). The synergistic interaction of microwave irradiation and ambient temperature was demonstrated for rabbit heating. Power flux density of microwave irradiation was shown to be a determinant of the synergistic interaction effectiveness. For the fixed ambient temperature ($30^{\circ}C$), the synergism was shown to be observed only within a definite power flux density ($0-100\;mW{\cdot}cm^{-2}$), inside of which there was an optimal intensity ($20\;mW{\cdot}cm^{-2}$), which maximized the synergistic effect. Any deviation of the power flux density from the optimal value resulted in a reduction of the synergy. It is concluded that any assessment of the health or environmental risks should take into account the synergistic interaction between ambient temperature and microwave radiation.