• 제목/요약/키워드: Microwave heat treatment

검색결과 100건 처리시간 0.026초

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

듀얼 소스 증착장치를 이용한 Ni-C 박막의 특성에 관한 연구 (A Study on the Characterization of Ni-C Thin Films Utilizing a Dual-Source Deposition System)

  • 한창석;전창환;한승오
    • 열처리공학회지
    • /
    • 제21권5호
    • /
    • pp.235-243
    • /
    • 2008
  • Ni-C composite films were prepared using a combination of microwave plasma CVD and ion beam sputtering deposition working in a codeposition way. The structure of these films was characterized by energy-dispersive X-ray diffraction (EDXRD), transmission electron microscopy (TEM) and Raman spectroscopy. It was found that a nickel carbide phase, $Ni_3C$ (hcp), formed as very fine crystallites over a wide temperature range when Ni-C films were deposited at low $CH_4$ flow rates. The thermal stability of this nonequilibrium carbide $Ni_3C$ was also studied. As a result, the $Ni_3C$ carbide was found to decompose into nickel and graphite at around $400^{\circ}C$. With high $CH_4$ flow rates (> 0.2 sccm), the structure of the Ni-C films became amorphous. The formation behavior of the carbide and amorphous Ni-C phases are discussed in relation to the electrical resistivity of the films.

동아의 물리적 특성 및 in vitro 포도당, 담즙산, 카드뮴 투과억제 효과에 대한 열처리 영향 (Effect of Heat Treatments on Physical Properties and in vitro Glucose, Bile Acid, and Cadmium Transport Retardation of Wax Gourd (Benincasa hispida))

  • 주인옥;정기태;류정;김영수
    • 한국식품과학회지
    • /
    • 제35권6호
    • /
    • pp.1117-1123
    • /
    • 2003
  • 동아를 autoclaving, boiling, microwaving 처리하고 그에 따른 물리적 특성과 in vitro 생리적 특성의 변화를 조사하였다. 열처리 방법에 따른 보수력은 microwaving이 9.43 g/g으로 가장 높았으며 boiling(5.12 g/g), 무처리(4.63 g/g), autoclaving(2.61 g/g) 순으로 낮아졌다. 팽윤력은 열처리 동아의 경우 $22.4{\sim}25.8\;mL/g$으로 무처리(18.0m L/g)보다 높은 것으로 나타났다. 동아의 calcium 흡착력은 microwaving, boiling, 무처리, autoclaving 순으로 나타났으며 autoclaving의 경우 나머지 처리의 30% 정도의 낮은 흡착력을 나타내었다. 열처리동아의 세포조직은 autoclaving 처리에 의하여 가장 심한 구조적 변형을 보였다. 반투막을 이용하여 in vitro법으로 확인한 glucose 투과 억제효과는 boiling 처리에 한해서 20.6%(투석 1시간)로 나타났다. Bile acid 투과 억제효과는 boiling, autoclaving, microwaving, 무처리 순으로 각각 22.9, 17.1, 14.3, 8.6%(투석 1시간)의 투과 억제효과를 보였다. Cadmium투과 억제효과는 열처리 방법에 관계없이 65% 이상으로 높게 나타났다.

미생물의 분화와 그 생화학적 기구 (Microbial Differentiation and its Biochemical Bases)

  • 김종협
    • 미생물학회지
    • /
    • 제11권2호
    • /
    • pp.101-106
    • /
    • 1973
  • microwave oven의 배지 처리에의 이용에 고나한 실험에서 다음 결론을 얻었다. 1)배지 융해에 이용함으로써 시간을 단축하고, 푸로판 불꽃 사용시의 실내 공기 오염을 막을 수 있었다, 2)혐기성 배지에서의 공기 저게는 wire barsket에 넣은 시험관을 물이 든 beaker에서 가열하므로써 끓어 넘는것을 막을 수 있었다. 3)배지 중의 E.coli 살균효과는 불꽃처리의 경우와 비슷하였으며 고압멸균을 대치할 수는 없을 것으로 판단되었다, 저자들의 실험실에서는 매일 5~6종의 배지를 만들기 위해 융해하며, 혐기성 세균동정을 위해 40~50개의 반유동 배지에서 공기를 제거하는바 이를 위해 지난 수개월간 microwave oven을 이용하고 있고 편리함을 경험하고 있다.

  • PDF

고주파 기판용 PTFE 복합체 형성 압력에 따른 유전 특성 (Dielectric Characteristics of Polytetrafluoroethylene-based Composites for Microwave Substrates with Formation Pressure)

  • 최홍제;전명표;조용수;조학래
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.429-433
    • /
    • 2013
  • PTFE composites for use of microwave substrate were fabricated by impregnation and heat treatment fabrication with glass fabric. This study shows dielectric properties such as dielectric constant and loss can be controlled by thickness of PTFE composite with change of pressure condition in heating press process. The dielectric constant of the PTFE composites has decreasing tendency as given higher pressure condition. The dielectric loss has similar result too. Especially, the case of the dielectric loss was affected by the condition of pressure at heating press and had the best performance under 3 MPa. In order to see the reason why thickness conditions make different, their microstructures were also observed.

열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구 (A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion)

  • 배문기;김태규
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Circularly Rotated Array for Dual Polarized Applicator in Superficial Hyperthermia System

  • Kim, Ki Joon;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • 제15권1호
    • /
    • pp.20-25
    • /
    • 2015
  • A circularly rotated array for a dual polarized applicator in a superficial hyperthermia system is proposed. The applicator has a wider effective treatment area due to the $180^{\circ}$ phase shift. The dual polarized circularly rotated array (DPCRA) suppresses overheating at the center of the array and helps evenly distribute the heat. This array provides a more effective treatment area than a lattice array when a $2{\times}2$ dual polarized array is fitted to the treatment area. The treatment area is 71.5% of the aperture, whereas the effective treatment areas of the $2{\times}2$ dual polarized lattice array (DPLA) and the single polarized array (SPA) are 57.2% and 38.6% of the same aperture, respectively. The measurement matches the simulation results without blood circulation effects. In a $2{\times}2$ array applicator, the proposed DPCRA has more heat uniformity than the DLA and the SPA.

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

금속/copper(Ⅱ)-phthalocyanine 계면에서의 Space Charge 연구 (Study of Space Charge of Metal/copper(Ⅱ)-phthalocyanine Interface)

  • 박미화;유현준;유형근;나승욱;김송희;이기진
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.350-356
    • /
    • 2005
  • We report the space charge and the surface potential of the interface between metal and copper(Ⅱ)-phthalocyanine(CuPc) thin films by measuring the microwave reflection coefficients S/sub 11/ of thin films using a near-field scanning microwave microscope(NSMM). CuPc thin films were prepared on Au and Al thin films using a thermal evaporation method. Two kinds of CuPc thin films were prepared by different substrate heating conditions; one was deposited on preheated substrate at 150。C and the other was annealed after deposition. The microwave reflection coefficients S/sub 11/ of CuPc thin films were changed by the dependence on grain alignment due to heat treatment conditions and depended on thickness of CuPc thin films. Electrical conductivity of interface between metal and organic CuPc was changed by the space charge of the interface. By comparing reflection coefficient S/sub 11/ we observed the electrical conductivity changes of CuPc thin films by the changes of surface potential and space charge at the interface.

금속/copper(II)-phthalocyanine interface에서의 space charge 연구 (Study of space charge of metal/copper(II)-phthalocyanine interface)

  • 박미화;임은주;유현준;이기진;차덕준;이용산
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.526-530
    • /
    • 2004
  • We report the space charge and the surface potential of the interface between metal and CuPc according to isotropic property and different metal by measuring the microwave reflection coefficients $S_{11}$ of copper(II)-phthalocyanine(CuPc) thin films by using a near-field microwave microscope(NSMM) in order to understand. CuPc thin films were prepared on gold and aluminium substrates using a thermal evaporation method. Two kinds of CuPc thin films were prepared. One was deposited on preheated substrate at $150^{\circ}C$ and the other was annealed after deposition by using thermal evaporation methods. The microwave reflection coefficients $S_{11}$ of CuPc thin films were changed by the dependence on the heat treatment conditions. By comparing reflection coefficient $S_{11}$ we measured electrical conductivity of CuPc thin films and studied this results with respect to the surface potential and space charge of the interface between metal and CuPc thin films.

  • PDF