• Title/Summary/Keyword: Microwave field simulation

Search Result 43, Processing Time 0.027 seconds

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

Computer Simulation on the Correlations between the Microwave Quality factor and the Pores inside the Dielectrics (마이크로파 유전체의 내부 기공과 마이크로파 품질계수의 상관관계에 대한 컴퓨터 시뮬레이션)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.311-316
    • /
    • 2003
  • Effects of pores on the microwave properties in microwave dielectric ceramics were studied by a computer simulation. Scattering matrix S$\_$21/ obtained from the network analyzer was compared to the S$\_$21/ obtained from the simulation. From electric field distribution, the dominant resonant TE$\_$01$\delta$/ mode could be easily determined. The effects of the porosity and pore size inside the dielectrics on the microwave properties were investigated by the HFSS simulation. When the total pore volume remains constantly, the quality factor decreased as the pore size Increases. As the total pore volume of the dielectrics increased. quality factor decreased.

Design and Fabrication of a Dual Cylindrical Microwave and Ohmic Combination Heater for Processing of Particulate Foods

  • Lee, Seung Hyun;Choi, Won;Park, Sung Hee;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.250-260
    • /
    • 2015
  • Purpose: Dual cylindrical microwave chambers equipped with an ohmic heating tube were designed and fabricated to maximize the electric field strength for expeditious heat treatment of particulate foods. Methods: The efficacy of the combination heater was investigated by simulating the electric field distribution by using COMSOL Multiphysics software. Results: All components of the designed microwave heating unit were suitable for transmitting maximal microwave power to the load. The simulated electric field distribution implied that single-mode microwave heating would be sufficient for the steady generation of a highly localized heating zone in the cavity. During impedance matching, the calculated reflection coefficient ($S_{11}$) was small, possibly implying minimal power loss and wave reflection in the designed microwave heating chamber. Conclusions: This study demonstrates the possibility of concentrating the microwave power at the centerline for a single-frequency microwave, for thermal treatment of multiphase foods without attenuating the microwave power.

Analytic Model of Spin-Torque Oscillators (STO) for Circuit-Level Simulation

  • Ahn, Sora;Lim, Hyein;Shin, Hyungsoon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Spin-torque oscillators (STO) is a new device that can be used as a tunable microwave source in various wireless devices. Spin-transfer torque effect in magnetic multilayered nanostructure can induce precession of magnetization when bias current and external magnetic field are properly applied, and a microwave signal is generated from that precession. We proposed a semi-empirical circuit-level model of an STO in previous work. In this paper, we present a refined STO model which gives more accuracy by considering physical phenomena in the calculation of effective field. Characteristics of the STO are expressed as functions of external magnetic field and bias current in Verilog-A HDL such that they can be simulated with circuit-level simulators such as Hspice. The simulation results are in good agreement with the experimental data.

Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation

  • Dewantari, Aulia;Jeon, Se-Yeon;Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Computer simulations were conducted to demonstrate the generation of microwave-induced thermoacoustic signal. The simulations began with modelling an object with a biological tissue characteristic and irradiating it with a microwave pulse. The time-varying heating function data at every particular point on the illuminated object were obtained from absorbed electric field data from the simulation result. The thermoacoustic signal received at a point transducer at a particular distance from the object was generated by applying heating function data to the thermoacoustic equation. These simulations can be used as a foundation for understanding how thermoacoustic signal is generated and can be applied as a basis for thermoacoustic imaging simulations and experiments in future research.

Design of compact klystron amplifier using Field-emitter-arrays (FEA)-based cathode

  • Jin, Jeong-Gu;Ha, Hyun-Jun;Park, Gun-Sik
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 1999
  • There has been an interest to develop an efficient, compact microwave device using field-emitter-arrays (FEA)-based cathode. Toe valuate the optimum device-efficiency in a compact size, the propagation properties of the premodulated electron beam for the FEA-based cathode is studied in detail by the computer simulation using a PIC code, MAGIC. For the premodulated electron beam whose phase of the energy leads the phase of the current by $\pi$/2, the amplitude of the downstream current modulation can be kept as high as the initial modulation level. Using the beam parameters with the beam voltage of 6kV and the current of 2.0A, 30% of efficiency is predicted when the quality factor of 800 is chosen. the device length is reduced about twice compared with that of the conventional device. The design of practical planar cathode is carried out to meet the minimum diameter of the electron beam as 0.5 mm.

  • PDF

Simulation Study on Measuring Pulverized Coal Concentration in Power Plant Boiler

  • Chen, Lijun;Wang, Yang;Su, Cheng
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.189-202
    • /
    • 2019
  • During thermal power coal-fired boiler operation, it is very important to detect the pulverized coal concentration in the air pipeline for the boiler combustion stability and economic security. Because the current measurement methods used by power plants are often involved with large measurement errors and unable to monitor the pulverized coal concentration in real-time, a new method is needed. In this paper, a new method based on microwave circular waveguide is presented. High Frequency Electromagnetic Simulation (HFSS) software was used to construct a simulation model for measuring pulverized coal concentration in power plant pipeline. Theoretical analysis and simulation experiments were done to find the effective microwave emission frequency, installation angle, the type of antenna probe, antenna installation distance and other important parameters. Finally, field experiment in Jilin Thermal Power Plant proved that with selected parameters, the measuring device accurately reflected the changes in the concentration of pulverized coal.

Cut-off Probe Frequency Spectrum의 물리적 해석

  • Yu, Sin-Jae;Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Na, Byeong-Geun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.200-200
    • /
    • 2011
  • Although the cut-off probe, a precise measurement method for the electron density, is widely used in the industry, the physics on the wave spectrum of the cut-off is not understood yet, only cut-off point frequency containing the information of electron density has been analyzed well. This paper analyzes the microwave frequency spectrum of the cut-off probe to see the physics behind using both microwave field simulation (CST Microwave Studio) and simplified circuit simulation. The result shows that the circuit model well reproduces the cut-off wave spectrum especially in the low frequency regime where the wavelength of the driving frequency is larger than the characteristic length and reveals the physics of transmission characteristics with frequency as resonances between vacuum, plasma and sheath. Furthermore, by controlling the time domain in solver of the microwave simulator, the cut-off like transmission peaks above the cut-off frequency which has been believed as cavity effect is verified as chamber geometry effect. The result of this paper can be used as the basis for the improvement of cut-off probe.

  • PDF

Simulation of High-Power Magnetron Oscillators Using a MAGIC3D Code (MAGIC3D 코드를 애용한 고출력 마그네트론 발진기의 시뮬레이션)

  • Jung, S.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.538-543
    • /
    • 2006
  • A high-Power continuous-wave (CW) ten-vane double-strapped magnetron oscillator has been investigated using three-dimensional (3D) particle-in-cell (PIC) numerical simulation code, MAGIC3D. The resonant modes and their resonant frequencies of the ten-vane strapped magnetron resonator were obtained to show a large mode separation near the ${\pi}$-mode. An electron cloud formed in an anode-cathode gap, called an interaction space was confined well enough to result in no leakage current. Five spokes were clearly observed in the electron cloud, which definitely ensured the ${\pi}$-mode oscillation in the ten-vane magnetron. Numerical simulations predicted that the saturated microwave output power measured at the coaxial output port was 5.41 kW at the microwave frequency of 893 MHz, corresponding to a power conversion efficiency of 72.6% when the external axial magnetic field was 1150 gauss and the electron beam voltage and current were 6 kV and 1.25 A, respectively.

Estimation of Microwave Path Loss and Cross-Polarization Coupling in a Simple Urban Area

  • Yisok Oh;No, Chan-Ho;Sung, Hyuk-Je;Lee, Byung-Hoon;Koo, Yeon-Geon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • Whereas it is well known that microwave propagation around corners of urban area is estimated well by the uniform geometrical theory of diffraction (UTD), it is not clear how much depolarization occurs at a given receiver position and how much transmission through walls affects to total path loss. This paper presents the results of the ray tracing simulation to answer these questions. Simulations of microwave propagation around corners were performed for various line-of-sight (LOS) and out-of-sight(OOS) positions of a receiver, by summing the electrical fields of reflected, diffracted and transmitted rays coherently. Since height difference between transmitter and receiver, as well as ground plane, causes depolarization, the ray tracing simulation estimates the cross-polarization coupling. It was found that the cross-polarization coupling decreases as receiver moves away from transmitter. Another part of the study focused on the signal transmitted through building walls of the corner. It was found that the transmitted field is dominant at OOS region when the conductivity of the walls is low (for example, lower than 0.0l S/m). The simulation results of the ray tracing technique in this study agreed well with an experimental measurement around corners.

  • PDF