• Title/Summary/Keyword: Microwave Transmission Line

Search Result 101, Processing Time 0.025 seconds

A Short Wavelength Transmission Line Employing Periodically Arrayed Capacitive Devices on MMIC (MMIC상에서 주기적으로 배치된 용량성 소자를 이용한 단파장 전송선로)

  • Jeong, Jang-Hyeon;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.840-845
    • /
    • 2010
  • In this paper, short-wavelength transmission line employing periodically arrayed capacitive devices (PACD) structures were developed for application to a development of miniaturized on-chip passive components on GaAs monolithic microwave integrated circuit (MMIC). The transmission line employing PACD structure showed a wavelength much shorter than conventional microstrip line. Concretely, the wavelength of the transmission line employing PACD structure was 8 % of the conventional microstrip line on GaAs substrate at 5GHz. And It was 38% of the microstrip line employing PPGM at 5GHz. It was recognized that the basic characteristics of the transmission line employing PACD structure were investigated for application to the miniaturized passive on-chip components.

FM Reflectometric Measurement of Group Velocities of Microwave Transmission Lines

  • Park, Yong-Hyun;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • In this paper, frequency modulated(FM) reflectometry is proposed to measure group velocity of microwave transmission line Various microwave transmission lines such as periodically loaded conducting posts in a waveguide and nonradiative dielectric(NRD) guide are adopted to measure their group velocity The result compared with that from network analyzer shows good agreement, indicating the validity of our measurement method.

A Slotted Triangular-Patch Type Artificial Transmission Line (슬롯을 가진 삼각패치형 인공전송선로)

  • Oh, Song-Yi;Choi, Kyung;Hwang, Hee-Yong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.164-167
    • /
    • 2010
  • In this paper, an artificial transmission line of triangular-patch type with slots is proposed. This artificial transmission line is useful for miniaturizing the electrical lengths of conventional transmission lines. Also, this structure is easy to regulate the characteristic impedance and electrical lengths. The electrical lengths and the characteristic impedances of the proposed artificial transmission line with some parameters are researched and summarized The proposed artificial transmission line could be useful for compact designs for most of the passive microwave components. The optional-artificial transmission line is fabricated and measured at 2.45GHz.

  • PDF

Study on RF characteristics of voltage-controlled artificial transmission line employing periodically arrayed diodes for application to highly miniaturized wireless communication systems (초소형 무선 통신 시스템에서의 응용을 위한 주기적으로 배열된 다이오드를 이용한 전압제어형 전송선로의 RF 특성에 관한 연구)

  • Kim, Soo-Jeong;Kim, Jeong-Hoon;Jeong, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.70-75
    • /
    • 2017
  • In this paper, we studied the RF characteristics of a voltage-controlled artificial transmission line employing periodically arrayed diodes for application to highly miniaturized wireless communication systems on an MMIC (monolithic microwave integrated circuit). According to the results, the novel voltage-controlled artificial transmission line employing periodically arrayed diodes exhibited a short wave length, which was only 35.2% that of the conventional transmission line, owing to increasing capacitance. In addition, it's effective permittivity and effective propagation constant exhibited considerably higher values than those of the conventional transmission line. Furthermore, attenuation constant of the voltage-controlled artificial transmission line was far higher than that of the conventional transmission line. Using the closed-form equation, we theoretically analyzed the equivalent circuit of the voltage-controlled artificial transmission line.

A Study on Basic Characteristics of Short Wavelength Transmission Line Employing Periodically Arrayed Capacitive Devices and Its Application to Highly Miniaturized Passive Components on MMIC (주기적으로 배치된 용량성 소자를 이용한 단파장 전송선로의 기본특성 연구와 MMIC용 초소형 수동소자개발에의 응용)

  • Jang, Eui-Hoon;Jeong, Jang-Hyeon;Choi, Tae-Il;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.157-165
    • /
    • 2012
  • In this study, a short-wavelength transmission line employing periodically arrayed capacitive devices (PACD) was studied for application to miniaturized on-chip passive component on monolithic microwave integrated circuit (MMIC). The transmission line employing PACD showed shorter wavelength and lower characteristic impedance than conventional microstrip transmission line. The wavelength transmission line employing PACD structure was 8% of the conventional microstrip transmission line on GaAs substrate. Using the theoretical analysis, basic characteristic of the transmission line employing PACD (e.g., loss, effective dielectric constant, effective propagation constant, bandwidth ) were also investigated in order to evaluate its suitability for application to a development of miniaturized passive on-chip components on MMIC. Above results indicate that the transmission line employing PACD is a promising candidate for a development of miniaturized passive components on MMIC.

A CMOS Compatible Micromachined Microwave Power Sensor (CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

A Study on the Microwave Transmission Line frequency Discriminator Using Branch-Line Hybrid 3dB coupler (Branch-LIne 하이브리드 3dB 결합기를 이용한 마이크로파 전송선로 전파수 판별기에 관한 연구)

  • 조홍구;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.97-102
    • /
    • 1985
  • A new microwave transmission line frequency discriminator in MIC is described, which is composed of a branch-line hybrid 3dB coupler, a λ/2-short stub and a λ/4-opcn stub. It is experimentally verified that the discriminator is linear in a 400 MHz bandwidth at center frequency 4.94 GHz and has return loss more than 15dB in that range.

  • PDF

Design and Fabrication of a BPF for 5.8 GHz Microwave Wireless Power Transmission (5.8 GHz 마이크로파 무선전력전송을 위한 BPF의 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.88-91
    • /
    • 2015
  • In this paper, we have designed and fabricated a BPF (Band Pass Filter) for 5.8GHz Microwave Wireless Power Transmission. We $used{\lambda}g/2$ open-circuited stubs in addition to T-shaped transmission lines for the BPF. This BPF removes harmonics caused by diodes of RF-DC converter, and thus the RF-DC converter converts more RF power to the DC. The performance of the BPF was measured and shown through direct comparison of voltages converted by the doubler as a RF-DC Converter with and without the BPF.

A Study on RF Characteristics of Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices for Application to Highly Miniaturized Wireless Communication system on MMIC (MMIC 상에서 초소형 무선 통신 시스템에의 응용을 위한 반전된 형태의 주기적 용량성 구조를 이용한 전송선로의 RF 특성에 관한 연구)

  • Kim, Jeong-Hoon;Jang, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.52-57
    • /
    • 2015
  • In this paper, we studies on the RF characteristics of the transmission line employing IPACD (inverted periodically arrayed capacitive devices) on MMIC (monolithic microwave integrated circuit) for application to wireless communication system. According to measured results, the novel transmission line employing IPACD showed a wavelength much shorter than conventional transmission lines. In addition, the IPACD structure showed an effective permittivity much higher than conventional ones. We also extracted the bandwidth characteristic of the IPACD structure using equivalent circuit analysis. According to the results, the cut-off frequency of the proposed structure was 129.2 GHz.

Design of Variable Power Distributor and Waveguide Connecting Structure for Wireless Microwave Power Transmission in a Building (실내 마이크로파 배전 전송계를 위한 가변전력분배기와 도파관의 결합구조 설계)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1477-1482
    • /
    • 2012
  • This paper deals with a new variable microwave power distributor and a connector between a deck plate and a input power waveguide for indoor microwave wireless power transmission. We design a new type connector built in the 3-stage coaxial line structure, and calculate the return loss of the connector at 2.45GHz. Newly designed connector shows the excellent return loss performance less than -30dB at the operating frequency of 2.45GHz. And we show a power distributor in which the dividing ratio of the power is controlled mechanically by three rotary fins. The distributor can control the dividing power from 4.5% to 58% with the variance of 5% output power. The experimentally tested results of the distributor are good agreement with the simulation within the return loss of 1%.