• Title/Summary/Keyword: Microwave Radiation

Search Result 233, Processing Time 0.059 seconds

Measurement of Electrophysiological Changes Caused by Electromagnetic Radiation Absorbed in Biobody (전자파에 노출된 생체의 전기 생리적 변화의 측정)

  • Ju-Tae Park
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.353-362
    • /
    • 1996
  • In this paper, SAR distribution is calculated according to the rabbit's head using approximation of its medium three layers model. Our experiment was classified 5 groups dependent on the power intensity of 2,450MHz microwave to measure EEG(Electroencephalograph) of rabbit, which was checked in left frontal lobe before and after irradiation of microwave. In results, mean total power of EEG was slightly decreased and mean composition percentages of $\theta$, $\delta$ and $\beta$ wave were increased after irradiation in observation. It means to decrease of elect- rophysiologic activity and trend of fast wave in brain after irradiation of its microwave. We analyzed the electrophysiological effect of the biobody quantitatively using measured EEG and estimated MPE (Maximum Permissible Exposure).

  • PDF

Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System (한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가)

  • Kim, Hyeyoung;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.263-276
    • /
    • 2022
  • The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications

  • Wang, Jun-Hui;Zeng, Yi-Kai;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.641-649
    • /
    • 2020
  • A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.

Evaluation of radiological safety according to accident scenarios for commercialization of spent resin mixture treatment device

  • Choi, Woo Nyun;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2606-2613
    • /
    • 2022
  • Spent resin often exceeds radiation limits for safe disposal, creating a need for commercial-scale treatment techniques to reduce resin radioactivity. In this study, the radiological safety of a commercialized spent resin treatment device with a treatment capacity of 1 ton/day was evaluated. The results confirm that the device is radiologically safe in the event of an accident. This device desorbs 14C from the spent resin, allowing disposal as low-level waste instead of intermediate-level waste. The device also reduces overall waste by recycling the extracted 14C. Potential accident scenarios were explored to enable dose assessments for both internal and external exposure while preventing further spillage of the device and processing the spilled resin. The scenarios involved the development of a surface fracture on the resin mixture separator and microwave systems, which were operated under pressure and temperature of 0-6 bar and 0-150 ℃, respectively. In the case of accidents with separator and microwave device, the maximum allowable working time of worker were derived, respectively, considering external and internal exposures. When wearing the respirator corresponding to APF 50, in the case of the microwave device accident scenario, the radiological safety was confirmed when the maximum worker worked within 132.1 h.

A Numerical Model of EM field calculation using Absorbing Boundary Conditions (Absorbing Boundary Condition을 이용한 전자파 수치해석)

  • Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.78-81
    • /
    • 1990
  • The Engquist-Majdas second-order Absorbing Boundary Conditions (ABC) has been combined with the finite element formulation replacing the boundary integral equations in the hybrid finite-boundary element method (HEM). The method is applied to electromagnetic field radiation problems, especially to the microwave launcher, in order to verify the finite element formulation with the ABC's. The results with ABC are in good agreement with those of HEM. In order to see the applicability of the ABC, a simplified microwave oven utilizing ABC and an absorbing material are provided. The EM field distribution of the model is visualized. This method could be a useful analysis and design tool for EM field devices.

  • PDF

On the Optimization of the Coaxial-Conical-Radial Type Power Divider/Combiner and the Improvement of Isolation Characteristics (동축-원추-방사형 전력분할/합성기의 중심부 높이에 따른 최적설계와 아이솔레이션 특성 향상)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1727-1732
    • /
    • 2011
  • In order to realize a high performance(low loss, high isolation) microwave power divider/combiner, we have designed the power combiner/divider precisely in accordance with the different hight of central part. In the case of the high central part of the hight of $h_r$=10.2, a compensating part of the conical line is inserted in the conical conversion transmission line, and in the case of low central part of the hight of $h_r$=5.0, the conical conversion transmission line is remodeled into the 2-stage bend structure. In both case, the reflection characteristics are improved to 30dB over the operating frequency range of 5GHz bandwidth. A resistance is inserted between the peripheral ports so as to try to improve the isolation characteristics of the device. For the 16-divider/combiner, the isolation characteristics are improved to 10dB over the operating frequency range of 5GHz bandwidth.

Modeling of Capacitive Coplanar Waveguide Discontinuities Characterized with a Resonance Method (공진 주파수 측정방법을 이용한 Coplanar Waveguide 용량성 불연속 구조 설계)

  • Kim, Dong-Young;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.181-184
    • /
    • 2001
  • A coplanar waveguide(CPW) on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side. This type of waveguide offers several advantages over microstrip line. It facilitates easy shunt as well as series mounting of active and passive devices. It eliminates the need for wraparound and via holes, and it has a low radiation loss. These, as well as several other advantages, make CPW ideally suited for microwave integrated circuit applications. However, very little information is available in the literature on models for CPW discontinuities. This lack of sufficient discontinuity models for CPW has limited the application of CPW in microwave circuit design. We presented for the characteristics of coplanar waveguide open end capacitance and series gap capacitance. Measurements by utilizing the resonance method were made and the experimental data confirmed the validity of theories. The relationships between the CPW capacitances and the physical dimensions were studied.

  • PDF

Wideband Characterization of Angled Double Bonding Wires for Microwave Devices (초고주파 소자를 위한 사잇각을 갖는 이중 본딩와이어의 광대역 특성 해석)

  • 윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.98-105
    • /
    • 1995
  • Recent microwave IC's reach to the extent of high operating frequencies at which bonding wires limit their performance as dominant parasitic components. Double bonding wires separated by an internal angle have been firstly characterized using the Method of Moments with the incorporation of the ohmic resistance calculated by the phenomenological loss equivalence method. For a 30$^{\circ}$ internal angle, the calculated total reactance is 45% less than that of a single bonding wire due to the negative mutual coupling effect. The radiation effect has been observed decreasing the mutual inductance, whereas for parallel bonding wires it greatly increases the mutual inductance. This calculation results can be widely used for designing and packaging of high frequency and high density MMIC's and OEIC's.

  • PDF

Development of Solar Energy Concentration for Plastic Joining

  • Yarlagadda, P.;Kim, I.S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents development of a SEC(Solar Energy Concentration) utilizing the concentrated solar beam radiation for joining engineering thermoplastics such as Acrylonitrile/Butadiene/Styrene(ABS), Polycarbonate(PC) and Polymethylmethacrylate (PMMA). In addition, to study the joining of the materials, necessary experimentation with applying primer was performed. Tensile tests were conducted to determine the bond strength achieved at the specimen Joint interface. Microscopic examinations of the fractured joints were performed in order to analyze the overall bond quality. Finally, the results in terms of bond strength achieved at the joint interface and energy consumed in the process was compared with those obtained with similar thermoplastic joining technique utilizing microwave energy.

  • PDF

Physical Properties Effect of Dry-Heat and Microwave-Cured Acrylic Resins depending on the Irradiation-Induced Changes (유도광선변화에 따른 건식중합과 마이크로파중합 아크릴레진의 물리적 성질영향)

  • Kim, Gyu-Ri
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4388-4397
    • /
    • 2015
  • The purpose of this study was to research the property change of acrylic resins depending on the induced-beam change and research the improved physical property of dry-heat and microwave-cured dental place acrylic resin in order to develop the acrylic resins with the optimum characteristic. As a result of observing flexural rigidity, hardness and color difference, the dry-heat-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5, 15, and 25 kGy irradiation. The microwave-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5 kGy irradiation. The correlation analysis showed a positive correlation among ARD, flexural rigidity (0 418), E coefficient (0.675) and Barcol hardness (0 588). The radiation cure technology is helpful for relieving the contamination caused by the manufacture of polymer composite. It can significantly contribute to the fusion of ultra violet cure technology and nano technology and the improvement of mechanical property without giving effect to the workability of polymer.