• Title/Summary/Keyword: Microwave Heating

Search Result 395, Processing Time 0.029 seconds

Dehydration of foamed sardine-starch paste by microwave heating. (고주파가열을 이용한 정어리 발포건조제품의 가공 II. 제품저장중의 품질변화와 저장기간)

  • 이병호
    • Journal of the Korean Professional Engineers Association
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 1984
  • In this part of the studies on dielectric dehydration of foamed fish-starch paste, quality stability and shelflife of the product of which the preparation formula and processing conditions were described in the previous report (Lee et at., 1982) were determined by means of accelerated reaction test. The product was stored for 50 days under the conditions of temperatures at 35, 45, and 55$^{\circ}C$ in steady state and various water activities of 0.44, 0.52, 0.65, and 0.75, respectively. The loss of available lysine, the extent of TBA value, and the development of browning during the storage were measured and reaction kinetically analysed to assess quality stability and shelf-life of the product for the storage at room temperature of 25$^{\circ}C$. The extent of browning was accelerated with the increase of water activity and temperature marking the time to reach a limit of color and flavor deterioration, or to reach brown color density of 0.17 O.D./g at 420nm, 106 days at a$\_$w/=0.44, 35$^{\circ}C$, and 41 days at aw=0.65, 55$^{\circ}C$. These reaction rates resulted in a prediction of shelf-life, 130 to 110 days in the storage at au=0.44 to 0.75, 25$^{\circ}C$. The quality limit assessed by TBA values and sensory evaluation of rancidity was 87 days at a$\_$w/=0.44, 35$^{\circ}C$, and 30 days at aw=0.73, 55$^{\circ}C$ which gave a predicted shelf-life, 128 to 113 days at a$\_$w/=0.44 to 0.75, 25$^{\circ}C$ storage.

  • PDF

Analysis on Patent Trends in Nonthermal Processing Technologies for Medicinal Herbs (한약재 가공 기술의 특허 동향 연구 - 비가열 가공 기술을 중심으로 -)

  • Kim, Kyoung Shin;Kim, Sung Gu;Chae, Suhn Kee;Kim, Byoung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.367-373
    • /
    • 2013
  • The purpose of this study was to analyze the patent application trend in the processing technology for medicinal herbs. Recently, in processing technology for medicinal herbs, experimental researches have frequently been published through papers in journals. However, the research results about the patent area were fewer than the others. We tried to analyze the patent application trend in nonthermal processing technologies for medicinal herbs by country as Korea, Japan, U.S.A. and Europe. The detailed technologies consisted of pulsed electric field, oscillatory magnetic field, intense pulsed light, ultrasonification, high hydrostatic pressure, microwave, radiation, Ohmic heating, and supercritical extraction. As a result we found that patents of nonthermal processing technologies has been growing steadily in quantity from 1980s and growing quickly since 2000s. The number of patent in Korea is larger than others as making up 70% in that whole. The number of patent in ultrasonification field was larger than others in portfolio analysis. Patent application trend in nonthermal processing technologies for ingestion occupies high share compared to other usage applications. In conclusion, patent trends of nonthermal processing technologies for medicinal herbs belong to the period in the development.

Effect of defects on lifetime of silicon electrodes and rings in plasma etcher (플라즈마 에쳐용 실리콘 전극과 링의 수명에 미치는 결함의 영향)

  • Eum, Jung-Hyun;Chae, Jung-Min;Pee, Jae-Hwan;Lee, Sung-Min;Choi, Kyoon;Kim, Sang-Jin;Hong, Tae-Sik;Hwang, Choong-Ho;Ahn, Hak-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • Silicon electrode and ring in a plasma etcher those are in contact with harsh plasma suffer from periodic heating and cooling during their lifetime. This causes the silicon components failure due to thermal stress remaining the persistent slip bands (PSBs) on their surfaces. The factors that determine the lifetime of silicon electrode and ring were discussed with respect to silicon ingot. The impurity level and the average defect concentration measured with glow discharge mass spectrometer (GDMS) and microwave photo-conductance decay (${\mu}$-PCD) were compared with the grade of silicon ingots those are divided to slip-free and slip-allowed ingot. Some silp-allowed samples showed planar defects along <110> direction on {001} surface. The role of these defects was suggested from the viewpoint of the lifetime of silicon components.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Effects of Heat Treatments on the Dietary Fiber Contents of Rice, Brown Rice, Yellow Soybean, and Black Soybean. (가열처리에 의한 백미, 현미, 노란콩 및 검정콩의 식이섬유 함량 변화)

  • 서우경;김영아
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.20-25
    • /
    • 1995
  • The effects of cooking on the dietary fiber content in rice, brown rice, yellow soybean and black soybean were investigated. The dietary fiber contents were analyzed by Prosky's method(AOAC method) after boiling, microwave heating and autoclaving of the sample. It was showed that the different cooking methods resulted in different effects on the insoluble dietary fiber contents. Except yellow soybean, cooking time had little effect on insoluble dietary fiber contets in the other samples. The contents of soluble dietary fiber were generally increased by cooking. Increased cooking time reduced the content of soluble dietary fiber in brown rice but increased in rice. However, no significant differences caused by cooking time were observed for soluble dietary fiber in black soybean. The effects of cooking method on the total dietary fiber contents were similar to those of insoluble dietary fiber. The reasons for this might be that the main fraction of total dietary fiber was insoluble forms and the content of total dietary fiber was calculated as the sum of insoluble and soluble dietary fiber content.

  • PDF

Effects of Cooking and Drying Methods on the Polar Lipids Composition of Shrimp (가열 및 건조방법이 새우의 극성지방질 조성에 미치는 영향)

  • Kim, Hyun-Ku;Jo, Kil-Suk;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 1989
  • Effects of cooking and drying methods on the composition of glycolipids and phospholipids of shrimp, Metapenaeus joyneri, were investigated. Major components of the glycolipids were esterified steryl glycosides, monogalactosyl diglycerides and steryl glycosides. Hot air drying enhanced the esterified steryl glycosides content substantially with the reduction of the monogalactosyl diglycerides content. However, reversed pattern was shown for freeze drying. Main components of the phospholipids were phosphatidyl ethanolamines, phosphatidyl cholines, phosphatidic acids, phosphatidyl inositols and phosphatidyl serines. Phosphatidic acids content for hot air and freeze dried shrimp without tooting was 8.3% and 5.9%, respectively. On the other hand, freeze dried shrimp with microwave heating was higher in phosphatidyl ethanolamines contents but lower in phosphatidyl cholines contents than hot air dried shrimp. Major fatty acids of the glycolipids and phospholipids fractions were pentadecanoic acid, palmitic acid, oleic acid, nervonic acid and eicosapentaenoic acid in fresh shrimp.

  • PDF

Fabrication of Mullite Short Fibers from Coal Fly Ash (석탄회로부터 뮬라이트 단섬유의 제조)

  • Kim, Byung-Moon;Park, Young-Min;Lyu, Seung-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.

Comparison of the Mineral Contents of Sun-dried Salt Depending on Wet Digestion and Dissolution (습식분해 및 직접용해법에 따른 천일염 중 무기성분 함량 비교)

  • Jin, Yong-Xie;Je, Jeong-Hwan;Lee, Yeon-Hee;Kim, Jin-Hyo;Cho, Young-Suk;Kim, So-Young
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.993-997
    • /
    • 2011
  • The aims of this research were to determine the proximate composition of various salts and to compare two digestion methods (direct digestion without heating, and microwave digestion) for the determination of the main mineral contents of various salts. Twelve salt samples were divided into three groups of four samples each (imported, Korean gray, and Korean white salts). As a result, the NaCl contents of the Korean white, Korean gray, and imported salts were 85.1, 89.3, and 91.3%, respectively. The salts in the three groups were analyzed for their main mineral contents via AAS. The sodium (Na) content of the Korean white salt was found to be slightly lower than that of the imported salt while the magnesium (Mg) and potassium (K) contents of the Korean white salt were found to be higher than those of the imported salt. The mineral composition (% Na:Mg) obtained using microwave-assisted digestion procedures, and the other dissolutions for the subsequent sample analysis, were 89:1 (for both the imported and Korean gray salts) and 82:3 vs. 81:3 (Korean white salt), respectively. The data regarding the mineral contents and composition of the sun-dried salts obtained through the analysis method of wet digestion and the dissolution procedure were compared, and no significant difference was found between the two datasets. Consequently, in this paper, a direct dissolution procedure is suggested for the analysis of the mineral composition of salt.

Antimicrobial Activity of Garlic Extracts according to Different Cooking Methods (조리방법을 달리한 마늘 추출물의 항균활성)

  • Kim Yong Doo;Kim Ki Man;Hur Chang Ki;Kim Eun Sun;Cho In Kyung;Kim Kyung Je
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.400-404
    • /
    • 2004
  • This study was conducted to find the antimicrobial activity of garlic extracts by various processing methods(boiled, pan fried, microwave heated, pickled). Ethanol and water extracts from garlic sample were prepared and antimicrobial activities were determined against 10 microoganisms ; food borne pathogens, food poisoning microoganisms, food-related bacteria and yeasts. The ethanol extracts from the fresh and pickled garlic showed antimicrobial activities for test microoganisms, except lactic acid bacteria and yeast. However, the antimicrobial activities were decreased by heat treatment. The minimum inhibitory concentration(MIC) of the fresh garlic extracts was determined to 0.1 mg/mL against an gram positive bacterium and 0.5 mg/mL against an gram negative bacterium. The antimicrobial activities of the ethanol extracts were affected by heating methods and not by pHs.