• Title/Summary/Keyword: Microtensile test

Search Result 70, Processing Time 0.02 seconds

DIFFERENCE IN BOND STRENGTH ACCORDING TO FILLING TECHNIQUES AND CAVITY WALLS IN BOX-TYPE OCCLUSAL COMPOSITE RESIN RESTORATION (박스 형태의 복합레진 수복시 충전법 및 와동벽에 따른 결합력 차이에 관한 연구)

  • Ko, Eun-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.350-355
    • /
    • 2009
  • Bond strength depends on characteristics of bonding surface and restorative technique. The majority of studies dealing with dentin bond strength were carried out on flat bonding surface, therefore, difference of bond strength between axial wall and pulpal wall is not clear yet. This study evaluated bonding difference between cavity walls in class I composite resin restoration with different filling techniques. Twenty extracted caries-free human third molars were used. Cavities were prepared in 6 ${\times}$4 ${\times}$3 mm box-type and divided into four groups according to filling technique and bonding surface: Group I; bulk filling - pulpal wall, Group II; bulk filling - axial wall, Group III; incremental filling - pulpal wall, Group IV; incremental filling - axial wall. Cavities were filled with Filtek $Z250^{(R)}$(3M/ESPE., USA) and Clearfill SE $bond^{(R)}$(Kuraray, Japan). After 24 hour-storage in $37^{\circ}C$water, the resin bonded teeth were sectioned bucco-lingualy at the center of cavity. Specimens were vertically sectioned into 1.0 ${\times}$1.0 mm thick serial sticks perpendicular to the bond surface using a low-speed diamond saw (Accutom 50, Struers, Copenhagen, Denmark) under water cooling. The trimmed specimens were then attached to the testing device and in turn, was placed in a universal testing machine (EZ test, Shimadzu Co., Kyoto, Japan) for micro-tensile testing at a cross-head speed of 1 mm/min. The results obtained were statistically analyzed using 2-way ANOVA and t-test at a significance level of 95%. The results were as follows: 1. There was no significant difference between bulk filling and incremental filling. 2. There was no significant difference between pulpal wall and axial wall, either. Within the limit of this study, it was concluded that microtensile bond strength was not affected by the filling technique and the site of cavity walls.

Tensile Strengths of Demineralized Dentin derived from Self-Priming Adhesives (Self-Priming Adhesives를 침투시킨 탈회 상아질의 인장강도)

  • Lee, Hye-Yun;Yoon, Mi-Ran;Lee, Rin;Lee, Jeong;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • The objectives of this study were to evaluate the tensile strength of resin-infiltrated demineralized dentin according to the demineralization time, and to evaluate the tensile strength of hybrid layer that is formed by infiltrating different priming adhesives or primer/adhesive into demineralizd dentin matrix. Seventy five hour-glass shaped dentin specimens were prepared in mid-coronal dentin from extracted human molars. Thirty specimens were distributed into three groups according to demineralization time - 2 hours, 4 hours and 8 hours. Each specimen was placed in primer/adhesive of All-Bond 2 for 5 hours of infiltration. Another forty-five specimens of them were demineralized in 37% phosphoric acid for 4 hours. They were randomly assigned to three experimental groups - AB, SB and OS - to designate All-Bond 2, Single Bond and One-Step. Each specimen was placed in one of three different adhesives for 5 hours of infiltration. The specimens were visible light-cured for 5 minutes, and then stored for 24 hours in distilled water at $37^{\circ}C$. After that, microtensile bond strength for each specimen was measured, and the fractured surfaces were then observed by SEM. The data were statistically analysed by one-way ANOVA and Tukey's multiple comparison test and Bonferroni's multiple comparison test. The results were as follows; 1. Tensile strength of the group demineralized for 4 hours was significantly higher than that of groups demineralized for 2 hours and 8 hours (P < .01). 3. Tensile strength of the AB group was significantly higher than that of the SB group and OS group (P < .01).

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

Effects of primers on the microtensile bond strength of resin cements to cobalt-chromium alloy (레진 시멘트와 코발트 크롬 합금의 미세인장결합강도에 다양한 프라이머들이 미치는 영향)

  • Jung, Hong-Taek;Campana, Shiela A.;Park, Jin-Hong;Shin, Joo-Hee;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: The aim of this study is to evaluate the effects of various primers on the microtensile bond strength (${\mu}TBS$) of resin cements to cobalt-chromium (Co-Cr) dental casting alloy. Materials and methods: Four adhesive primers (Universal primer, Metal primer II, Alloy primer, and Metal/Zirconia primer) and two resin cements (Panavia F2.0, G-CEM LinkAce) were tested. One hundred fifty Co-Cr beams were prepared from Co-Cr ingots via casting ($6mm\;ength{\times}1mm\;width{\times}1mm\;thick$). The metal beams were randomly divided into ten groups according to the adhesive primers and resin cements used; the no-primer groups served as the control (n = 15). After sandblasting with aluminum oxide ($125{\mu}m$ grain), the metal and resin cements were bonded together using a silicone mold. Prior to testing, all metal-resin beams were examined under stereomicroscope, and subjected to the ${\mu}TBS$ test. The mean value of each group was analyzed via one-way ANOVA with Tukey's test as post hoc (${\alpha}=.05$) using SPSS software. Results: The mean ${\mu}TBS$ of all groups was ranged from 20 to 28 MPa. There is no statistically significant difference between groups (P > .05). Mixed failure, which is the combination of adhesive and cohesive failures, is the most prevalent failure mode in both the Panavia F2.0 and G-Cem LinkAce groups. Conclusion: The ${\mu}TBS$ of all tested groups are relatively high; however, the primers used in this study result in no favorable effect in the ${\mu}TBS$ of Panavia F2.0 and G-Cem LinkAce resin cement to Co-Cr alloy.

Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

  • Ahn, Joonghee;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods: Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results: In GB, XV and SE ($pH{\leq}2$), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions: The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.

The influence of nanofillers on the properties of ethanol-solvated and non-solvated dental adhesives

  • da Cruz, Leonardo Bairrada Tavares;Oliveira, Marcelo Tavares;Saraceni, Cintia Helena Coury;Lima, Adriano Fonseca
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.28.1-28.10
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the influence of different concentrations of nanofillers on the chemical and physical properties of ethanol-solvated and non-solvated dental adhesives. Materials and Methods: Eight experimental adhesives were prepared with different nanofiller concentrations (0, 1, 2, and 4 wt%) and 2 solvent concentrations (0% and 10% ethanol). Several properties of the experimental adhesives were evaluated, such as water sorption and solubility (n = 5, 20 seconds light activation), real-time degree of conversion (DC; n = 3, 20 and 40 seconds light activation), and stability of cohesive strength at 6 months (CS; n = 20, 20 seconds light activation) using the microtensile test. A light-emitting diode (Bluephase 20i, Ivoclar Vivadent) with an average light emittance of $1,200mW/cm^2$ was used. Results: The presence of solvent reduced the DC after 20 seconds of curing, but increased the final DC, water sorption, and solubility of the adhesives. Storage in water reduced the strength of the adhesives. The addition of 1 wt% and 2 wt% nanofillers increased the polymerization rate of the adhesives. Conclusions: The presence of nanofillers and ethanol improved the final DC, although the DC of the solvated adhesives at 20 seconds was lower than that of the non-solvated adhesives. The presence of ethanol reduced the strength of the adhesives and increased their water sorption and solubility. However, nanofillers did not affect the water sorption and strength of the tested adhesives.

THE EFFECT OF THERMOCYCLING ON THE DURABILITY OF DENTIN ADHESIVE SYSTEMS (열순환이 상아질 접착제의 결합 내구성에 미치는 영향)

  • Moon, Young-Hoon;Kim, Jong-Ryul;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.222-235
    • /
    • 2007
  • The objectives of this study was to evaluate the effect of thermocycling on the ${\mu}TBS$ (microtensile bond strength) to dentin with four different adhesive systems to examine the bonding durability. Freshly extracted $3^{rd}$ molar teeth were exposed occlusal dentin surfaces, and randomly distributed into 8 adhesive groups 3-steps total-etching (Scotchbond Multi-Purpose Plus; SM, All Bond-2; AB), 2-steps total-etching (Single Bond; SB, One Step plus; OS), 2-steps self-etching (Clearfil SE Bond; SE, AdheSE AD) and single-step self-etching systems (Promp L-Pop; PL, Xeno III; XE) Each adhesive system in 8 adhesives groups was applied on prepared dentin surface as an instruction and resin composite (Z250) was placed incrementally and light-cured. The bonded specimens were sectioned with low-speed diamond saw to obtain $1\times1mm$ sticks after 24 hours of storage at $37^{\circ}C$ distilled water and proceeded thermocycling at the pre-determined cycles of 0, 1,000 and 2,000. The ${\mu}TBS$ test was carried out with EZ-tester at 1mm/min. The results of bond strength test were statistically analyzed using one-way ANOVA/ Duncan's test at the a < 0.05 confidence level. Also, the fracture mode of debonded surface and the interface were examined under SEM. The results of this study were as follows ; 1. 3-step total etching adhesives showed stable, but bond strength of 2-step adhesives were decreased as thermocycling stress. 2. SE showed the highest bond strength, but single step adhesives (PL, XE) had the lowest value both before and after thermocycling. 3 Most of adhesives showed adhesive failure. The total-etching systems were prone to adhesive failure and the single-step systems were mixed failure after thermocycling. Within limited results of this study, the bond strength of adhesive system was material specific and the bonding durability was affected by the bonding step/ procedure of adhesive Simplified bonding procedures do not necessarily imply improved bonding performance.

Effect of Ethanol Addition on Efficacy of Dental Adhesive (에탄올의 첨가가 치과용 접착제의 효율에 미치는 영향)

  • Min, Jeong-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.161-174
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of ethanol addition on efficacy of two-step total-etch adhesive under over-wet condition by measurement of remaining volatile part (RVP), microtensile bond strength (${\mu}TBS$), and degree of conversion (DC). Two-step total-etch adhesive, Optibond Solo Plus (Kerr, Orange, USA), was used. Experimental groups were divided into 8 groups: Group 1 (only 10 ${\mu}l$ adhesive), Group 2 (mixture of 3 ${\mu}l$ distilled water and 10 ${\mu}l$ adhesive), From Group 3 to Group 8 (mixture of 3 ${\mu}l$ distilled water, 10 ${\mu}l$ adhesive, and ethanol added in 1 ${\mu}l$ increment from 1 ${\mu}l$ to 6 ${\mu}l$). The mixtures were placed on slide glass and evaporated for 10 s, 30 s, and 60 s by air-drying. The weight of RVP was measured by precision weight. Same procedures were performed for ${\mu}TBS$ test and measurement of DC. The condition of mixed solution was observed under light microscope. For RVP weight, the weights of experimental groups except for group 1 decreased with the increase of air-drying time (p<0.05). The DC increased with the increase of air-drying time in only group 5 and 6 (p<0.05). The ${\mu}TBS$ increased with the increase of air-drying time in group only 5, 6, and 7 (p<0.05). The phase separation was examined and water blisters were diminished with the increase of air-drying time in group 5, 6, 7, and 8. Within the limits of this study, ethanol additionally applied to adhesive decreased RVP and increased DC and ${\mu}TBS$ under over-wet condition. It was shown that the addition of ethanol to two-step total-etch adhesive under over-wet condition would remove water and increase the efficacy of adhesive.

MEASUREMENT OF ADHESION OF ROOT CANAL SEALER TO DENTINE AND GUTTA-PERCHA (상아질과 Gutta-Percha에 대한 근관충전용 Sealer의 결합강도의 측정)

  • Her, Mi-Ja;Yu, Mi-Kyung;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.89-99
    • /
    • 2003
  • The purpose of this study was to investigate the bonding of resin- based root canal sealer, AH26 when the sealer was applied as a thin layer between dentine and gutta-percha surface. In this study forty non-caries extracted human molars and resin-based root canal sealer(AH 26, DeTrey/Dentsply, Germany) were used. Disks of gutta-percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for thermoplastic obturation were used and dentin surfaces were treated with 2% NaOCl(Group 1) or 2%NaOCl+17% EDTA(Group 3). Disks of gutta-Percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for conventional obturation were used and dentin surface were treated with 2% NaOCl(Group 2) or 2%NaOCl+17% EDTA(Group 4). Enamel was removed by a horizontal section 1mm below the deepest portion of the central occlusal groove by using a watercooled low speed diamond saw. A second horizontal section was done around cementoenamel junction. Exposed dentin surface was cut to approximately $8{\times}8{\;}mm$ rectangular shape and was ground against 320, 400, 600 grade silicon carbide abrasive paper serially. After grinding, the dentine surface were soaked in a solution of 2% NaOCl for 30 minutes and twenty of specimens were treated with 17% EDTA solution for 1 minute. The treated specimens were washed and dried, Root canal sealer, AH26 was prepared according to the manufacture's instructions The Gutta-percha and dentin surface were coated with a thin layer of the freshly mixed seal or. The specimens were left overnight at room temperature. After their initial set, they were transferred to an incubator at $37$^{\circ}C$ for 72 h. After 72 hours, resin blocks were made. The resin block was serially sectioned vertically into stick of $1{\cdot}1mm$. Twenty sticks were prepared from each group. After that, tensile bond strength f3r each stick was measured with Microtensile Tester Failure patterns of the specimens at the interface between gutta-percha and dentin were observed under the SEM(x1000) and Stereomicroscope (LEICA M42O, Meyer Inst., TX U.S.A) at 1.25 x25 magnification. The results were statistically analysed by using a One-way ANOVA and Tukey's test. The results were as follows; 1. Tensile bond strengths($mean{\pm}SD$) were expressed with ascending order as follows: Group 1, $3.09{\pm}$ 1.05Mpa : Group 2, $6.23{\pm}1.16MPa$ : Group 3, $7.12{\pm}1.07MPa$ : Group 4, $10.32{\pm}2.06MPa$. 2. Tensile bond strengths of the group 2 and 4 used disks of gutta-percha for conventional obturation were significantly higher than that of the group 1 and 3 used fir thermoplastic obturation. (p < 0.05). 3. Tensile bond strengths of the group 3 and 4 treated with 2% NaOC1+17% EDTA were significantly higher than that of the group 1 and 2 treated with 2% NaOCl. (p < 0.05). 4. In analysis of failure patterns at the interface between sealer and gutta-percha, there were observed 49 (61%)cases of adhesive failure patterns and 31 (39%) cases of mixed failures patterns.