• Title/Summary/Keyword: Microtensile test

Search Result 70, Processing Time 0.025 seconds

Etching effects and microtensile bond strength of total etching and self-etching adhesive system on unground enamel

  • Oh, Sun-Kyong;Hur, Bock
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.618-618
    • /
    • 2003
  • The purpose of this study was to evaluate the etching effects and bond strength of total etching and self-etching adhesive system on unground enamel using scanning electron microscopy and microtensile bond strength test. The buccal coronal unground enamel from human extracted molars were prepared using low-speed deamond saw. Scotchbond Multi-Purpose(group CM), Clearfil SE Bond(group SE), or Adper Prompt L-pop(group LP) were applied to the prepared teeth, and resin compasite(Z-250) was built up incrementally. Resin tag formation were evaluated by scanning electron microscopy, after removal of enamel surface by acid dissolution and dehydration.(중략)

  • PDF

MICROTENSILE BOND STRENGTH ACCORDING TO DIFFERENT DENTIN WALL POSITION IN CLASS I CAVITY OF PRIMARY MOLAR (유구치 1급 와동에서 와동벽 위치에 따른 microtensile bond strength 비교 연구)

  • Lee, Hyeon-Heon;Jung, Tae-Ryun;Kim, Jung-Wook;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.693-698
    • /
    • 2006
  • In Class I cavity, the highest C-factor could be obtained and it means the highest polymerization shrinkage stress. In this study, high C-factor model was designed. The pulpose of present study was to determine differences of Microtensile bond strength (MTBS) of class I cavity pulpal and axial wall specimens in primary molar. Twenty clean mandibular 2nd primary molars were randomly divided into two groups Different composite Resins (Filtek Z250, 3M ESPE & Filtek Supreme, 3M ESPE) were bulk filled and photo cured. Axial wall specimens and pulpal specimens were prepared at the same teeth, All specimens were divided into 4 groups and MTBS were evaluated. Group ZP : Filtek Z250-Pulpal wall Group ZA : Filtek Z250-Axial wall Group SP : Filtek Supreme - Pulpal wall Group SA : Filtek Supreme - Axial wall The results were as follows: 1. Mean MTBS of ZP & ZA and SP & SA were significantly different(p<.001). 2. There was no significant difference between MTBS of ZP & SP and ZA & SA.

  • PDF

Effects of one or two applications of all-in-one adhesive on microtensile bond strength to unground enamel (Unground enamel에 대한 all-in-one adhesive의 1회 또는 2회 적용이 미세인장 결합강도에 미치는 영향)

  • Son, Chang-Yong;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.445-451
    • /
    • 2006
  • The purposes of this study were to compare the effects of one or two applications of all-in-one adhesives on microtensile bond strengths (${\mu}$TBS) to unground enamel and to investigate the morphological changes in enamel surfaces treated with these adhesives using a scanning electron microscopy (SEM). Twenty-five noncarious, unrestored human mandibular molars were used. The unground enamel surfaces were cleansed with pumice. The following adhesives were applied to lingual, mid-coronal surfaces according to manufacture's directions; Clearfil SE bond in SE group, Adper Prompt L-Pop$^{TM}$1 coat in LP1 group, 2 coats in LP2 group, Xeno$^{\R}$III1 coat in XN1 group, and 2 coats in XN2 group. After application of the adhesives, a hybrid light-activated resin composite was built up on the unground enamel. Each tooth was sectioned to make a cross-sectional area of approximately 1.0 mm$^2$ for each stick. The microtensile bond strength was determined. Each specimen was observed under SEM to examine the morphological changes. Data were analyzed with one-way ANOVA. The results of this study were as follows; 1. The microtensile bond strength values were; SE (19.77 ${\pm}$ 2.44 MPa), LP1 (13.88 ${\pm}$ 3.67 MPa), LP2 (14.50 ${\pm}$ 2.52 MPa), XN1 (14.42 ${\pm}$ 2.51 MPa) and XN2 (15.28 ${\pm}$ 2.79 MPa). SE was significantly higher than the other groups in bond strength (p < 0.05). All groups except SE were not significantly different in bond strength (p < 0.05). 2. All groups were characterized as shallow and irregular etching patterns.

Removal of superficial dentin surface to restore decreased bond strength caused by sodium hypochlorite

  • Song, Mi-Yeon;Hwang, Ho-Keel;Jo, Hyoung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.53 no.12
    • /
    • pp.958-966
    • /
    • 2015
  • Objective: Sodium hypochlorite (NaOCl) decreases the bond strength of resin composite. The purpose of this study was to compare the effect of antioxidant and superficial dentin surface removal on the microtensile bond strength of NaOCl-treated dentin. Materials and Methods: Twenty non-carious human third molars were used in this study. The dentin surfaces were treated with 5.25% NaOCl for 10 min, followed either by treatment with 10% ascorbic acid or superficial dentin surface removal. Two-step self-etch adhesive and resin composite were used for restoration. The bonded specimens were subjected to the microtensile bond strength test. Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's test (p < 0.05). Results: The bond strength after removal of the superficial dentin surface following NaOCl irrigation was similar to that in the control group. The group treated with 10% ascorbic acid demonstrated significantly higher bond strength than the other groups. Conclusion: NaOCl irrigation-induced reduction in dentin bond strength could be recovered by either treatment with 10% ascorbic acid or simple removal of the superficial dentin surface.

Measurement of Contact Angle and Bond Strength Using 3 Different Self-Etching Primer (3종의 자가부식 프라이머의 상아질계면 접촉각 및 미세인장결합강도에 관한 연구)

  • Chang, Seok-Woo;Kwon, Ho-Beom;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • The purpose of this study was to evaluate the contact angle made by 3 kinds of self etching primers (Clearfil SE Bond, AdheSE, and Tyrian) on dentin and to measure the microtensile bond strength of resin composite to dentin using these self-etching primers. Contact angle between each of 3 self etching primers and polished dentin surface was measured (n=30) by contact angle analyzer and the result was analyzed by One-way ANOVA. For the measurement of microtensile bond strength, polished dentin surface was treated with each of 3 self etching primers and dentin adhesives. Z-250 composite resin was built-up with a height of 5 mm on the adhesive-treated surface and light cured for 40s with a halogen light curing unit. Thereafter, each tooth was sectioned into slabs perpendicular to the bonded interface and trimmed (n=45). The microtensile bond strength was measured with universal testing machine and the result was analyzed with Kruskal-Wallis test. AdheSE group showed the highest contact angle followed by Clearfil SE group and Tyrian group (p<0.05). AdheSE group and Clearfil SE group showed significantly higher microtensile bond strength than Tyrian group (P<0.05).

The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives

  • Tekce, Neslihan;Tuncer, Safa;Demirci, Mustafa
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • PURPOSE. To evaluate the effect of prolonged sandblasting on the bond durability of dual-cure adhesive resin cement to computer-aided design and computer-aided manufacturing (CAD/CAM) restoratives. MATERIALS AND METHODS. Nano-ceramic LAVA Ultimate and hybrid-ceramic VITA Enamic CAD/CAM blocks were used for this study. Each CAD/CAM block was sectioned into slabs of 4-mm thickness for the microtensile test (${\mu}TBS$) test and 2-mm thickness for the surface roughness test. Three groups were created according to the sandblasting protocols; group 1: specimens were sandblasted for 15 seconds, group 2: specimens were sandblasted for 30 seconds, and group 3: specimens were sandblasted for 60 seconds. After sandblasting, all specimens were luted using RelyX Ultimate Clicker. Half the specimens were subjected to ${\mu}TBS$ tests at 24 hours, and the other half were subjected to tests after 5000 thermocycles. Additionally, a total of 96 CAD/CAM block sections were prepared for surface roughness tests and scanning electron microscopy (SEM) evaluations. The Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance, and Dunn's post hoc test were used to compare continuous variables among the groups. RESULTS. At baseline, group 1, group 2, and group 3 exhibited statistically similar ${\mu}TBS$ results for LAVA. However, group 3 had significantly lower ${\mu}TBS$ values than groups 1 and 2 for VITA. After 5000 thermocycles, ${\mu}TBS$ values significantly decreased for each block (P<.05). CONCLUSION. It is important to perform controlled sandblasting because it may affect bond strength results. Sixty seconds of sandblasting disturbs the initial ${\mu}TBS$ values and the stability of adhesion of CAD/CAM restoratives to dual-cure adhesive resin cement for VITA Enamic.

Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks

  • Bahadir, Hasibe Sevilay;Bayraktar, Yusuf
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.140-149
    • /
    • 2020
  • PURPOSE. This study evaluated the color stabilities of two computer-aided design and computer-aided manufacturing (CAD/CAM) blocks and a nanofill composite resin and the microtensile bond strength (µTBS) between the materials. MATERIALS AND METHODS. Twelve specimens of 4 mm height were prepared for both Lava Ultimate (L) and Vita Enamic (E) CAD/CAM blocks. Half of the specimens were thermocycled (10,000 cycle, 5° to 55℃) for each material. Both thermocycled and non-thermocycled specimens were surface treated with one of the three different methods (Er,Cr:YSGG laser, bur, or control). For each surface treatment group, one of the thermocycled and one of non-thermocycled specimens were restored using silane (Ceramic Primer II), universal adhesive (Single Bond Universal), and nanofill composite resin of 4-mm height (Filtek Ultimate). The other specimens were restored with the same procedure without using silane. For each group, 1 × 1 × 8 mm bar specimens were prepared using a microcutting device. Bar specimens were thermocycled (10,000 cycle, 5° to 55℃) and microtensile tests were performed. Staining of the materials in coffee solution was also compared using a spectrophotometer. Data were analyzed using one-way ANOVA, t-test and post-hoc Scheffe tests. RESULTS. µTBS were found similar between the thermocycled and non-thermocycled groups (P>.05). The highest µTBS (20.818 MPa) was found in the non-thermocycled, bur-ground, silane-applied E group. Silane increased µTBS at some E groups (P<.05). Composite resin specimens showed more staining than CAD/CAM blocks (P<.05). CONCLUSION. CAD/CAM blocks can be repaired with composite resins after proper surface treatments. Using silane is recommended in repair process. Color differences may be shown between CAD/CAM blocks and the nanofill composite after a certain time period.

INFLUENCE OF APPICATION TIME OF SELF-ETCHING PRIMERS ON DENTINAL MICROTENSILE BOND STRENGTH (자가 산부식 프라이머의 적용시간이 상아질의 미세인장 결합강도에 미치는 영향)

  • Cho, Young-Gon;Lee, Young-Gon;Kim, Jong-Uk;Park, Byung-Cheul;Kim, Jong-Jin;Choi, Hee-Young;Jin, Cheul-Hee;Yoo, Sang-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.430-438
    • /
    • 2004
  • This study evaluated the influence of application time of self-etching primers on microtensile bond strength (${\mu}$TBS) to dentin using three self-etching primer adhesive systems. Dentin surfaces were exposed from forty-eight human molars. They were conditioned with three self-etching primers (Clearfil SE Bond [SE], Unifil Bond [UF], Tyrian SPE + One Step Plus [TY]) and different primining times (10s, 20s, 30s and 40s). Composite resins were bonded to dentin surfaces and specimens were made. ${\mu}TBS$ was tested and statistically compared using by one-way ANOVA and Tukey's Test. The results of this study presented that priming time for 10s in SE and UF groups and for 30s and 40s in TY group was highly decreased ${\mu}TBS$ to dentin.

Microtensile bond strength of repaired indirect resin composite

  • Visuttiwattanakorn, Porntida;Suputtamongkol, Kallaya;Angkoonsit, Duangjai;Kaewthong, Sunattha;Charoonanan, Piyanan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • PURPOSE. The objective of this study was to investigate the effect of surface treatments on microtensile bond strengths (MTBSs) of two types of indirect resin composites bonded to a conventional direct resin composite. MATERIALS AND METHODS. Indirect resin composite blocks of Ceramage and SR Nexco were prepared in a plastic mold having a dimension of $10{\times}10{\times}4\;mm$. These composite blocks were divided into three groups according to their surface treatments: Group1: Sandblast (SB); Group2: Sandblast and ultrasonically clean (SB+UL); Group3: Sandblast plus silane (SB+SI). After bonding with direct resin composite, indirect-direct resin composite blocks were kept in distilled water for 24 hours at $37^{\circ}C$ and cut into microbars with the dimension of $1{\times}1{\times}8\;mm$. Microbar specimens (n = 40 per group) were loaded using a universal testing machine. Failure modes and compositions were evaluated by SEM. The statistical analyses of MTBS were performed by two-way ANOVA and Dunnett's test at ${\alpha}=.05$. RESULTS. Surface treatments and brands had effects on the MTBS without an interaction between these two factors. For SR Nexco, the MTBSs of SB and SB+SI group were significantly higher than that of SB+UL. For Ceramage, the MTBSs of SB and SB+SI were significantly higher than that of SB+UL. The mean MTBS of the Ceramage specimens was significantly higher than that of SR Nexco for all surface treatments. CONCLUSION. Sandblasting with or without silane application could improve the bond strengths of repaired indirect resin composites to a conventional direct resin composite.

Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities

  • Kang, Hyun-Jung;Moon, Ho-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Objectives: This study evaluated the effect of 2% chlorhexidine digluconate (CHX) with different application times on microtensile bonds strength (MTBS) to dentin in class I cavities and intended to search for ideal application time for a simplified bonding protocol. Materials and Methods: Flat dentinal surfaces with class I cavities ($4mm{\times}4mm{\times}2mm$) in 40 molar teeth were bonded with etch-and-rinse adhesive system, Adper Single Bond 2 (3M ESPE) after: (1) etching only as a control group; (2) etching + CHX 5 sec + rinsing; (3) etching + CHX 15 sec + rinsing; (4) etching + CHX 30 sec + rinsing; and (5) etching + CHX 60 sec + rinsing. Resin composite was builtup with Z-250 (3M ESPE) using a bulk method and polymerized for 40 sec. For each condition, half of the specimens were immediately submitted to MTBS test and the rest of them were assigned to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using two-way ANOVA, at a significance level of 95%. Results: There was no significant difference in bond strength between CHX pretreated group and control group at the immediate testing period. After thermocycling, all groups showed reduced bond strength irrespective of the CHX use. However, groups treated with CHX maintained significantly higher MTBS than control group (p < 0.05). In addition, CHX application time did not have any significant influence on the bond strength among groups treated with CHX. Conclusion: Application of 2% CHX for a short time period (5 sec) after etching with 37% phosphoric acid may be sufficient to preserve dentin bond strength.