• Title/Summary/Keyword: Microstructure development

Search Result 654, Processing Time 0.031 seconds

SLS (Sequential Lateral Solidification) Technology for High End Mobile Applications

  • Kang, Myung-Koo;Kim, Hyun-Jae;Kim, ChiWoo;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.8-11
    • /
    • 2007
  • The new technologies in mobile display developed in SEC are briefly reviewed. For a differentiation, SEC's LTPS line is based on SLS (Sequential Lateral Solidification) technology. In this paper, the characteristics of SEC's SLS in recent and future mobile displays were discussed. The microstructure produced by SLS crystallization is dependent on SLS process conditions such as mask design, laser energy density, and pulse duration time. The microstructure and TFT (Thin Film Transistor) performance are closely related. For an optimization of TFT performance, SLS process condition should be adjusted. Other fabrication processes except crystallization such as blocking layer, gate insulator deposition and cleaning also affect TFT performance. Optimized process condition and tailoring mask design can make it possible to produce high quality AMOLED devices. The TFT non-uniformity caused by laser energy density fluctuation could be successfully diminished by mixing technology.

  • PDF

The Effect of Intermediate Thermo-Mechanical Treatment on the Microstructure and Mechanical Property of 7175 Al Alloy (7175 합금 단조재의 미세조직과 기계적 성질에 미치는 중간가공열처리 영향)

  • Lee, Y.Y.;Song, Y.B.;Im, S.T.;Son, Y.I.;Lee, K.H.;Eun, I.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.172-180
    • /
    • 1997
  • The microstructure, tensile and impact properties of forgings of 7175 aluminium alloy have been studied as a function of intermediate thermo-mechanical treatment(ITMT) process. The ITMT process is consisted of warm working and recrystallization. In the case that the billet was warm-worked above 60% below $250^{\circ}C$ and recrystallized at $475^{\circ}C$, the grain size revealed about $17{\mu}m$ which corresponds to one third of that of conventional process. The refinement of grain size leaded to the improved ductility and impact energy without sacrifice of tensile strength. It was found that the ITMT processed specimen behaved isotropically due to the near equiaxed grains. It was observed that the ITMT processed specimen showed the mixed fracture mode of transgranular and intergranular, instead of intergranular mode. This change of fracture mode contributed to the improved ductility and impact property.

  • PDF

A Study on the Microstryctural Evoulution of the Reagion Aheas of Craters Created by Copper and W-Cu Shaped Charge Jets (W-Cu와 Cu의 고속 충돌에 의한 연강의 미세조직 변화)

  • Lee, Seong;Hong, Moon-Hee;Baek, Woon-Hyung
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • The microstructure of the reagion of carters, created by Cu and W-Cu shaped charge jets, in a 1020 mild steel target has been intestiaged. The region ahead of the crater created by the Cu shaped charge jet, reveals dramatic grain refinement implying the occurrence of a dynamic recrystallization, while that of W-Cu one dose a martensitic transformation indicative of heating up to an austenitic region followed by rapid cooling.The impacting pressure calculated when the W-Cu shaped charge jet encounters the target is higher than that of the Cu one. The micro-hardness of the region ahead of the crater created by the W-Cu shaped charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug remained in the inside of the craters depicts the occurrence of the remarkable elongation of W particles during the liner collaphse. From these results, the microstructural variation of the region ahead of the crater with Cu and W-Cu shaped charge jets is discussed in trems of the pressure dependency of the transformation region of ferrite and austenite phases.

  • PDF

Effect of Microstructure on Alternating Current-induced Damage in Cu Lines

  • Park Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.27-33
    • /
    • 2005
  • The effect of microstructure on alternating current-induced damage in 200 and 300 nm thick polycrystalline sputtered Cu lines on Si substrates has been investigated. Alternating currents were used to generate temperature cycles (with ranges from 100 to $300^{\circ}C$) and thermal strains (with ranges from 0.14 to $0.42\%$) in the Cu lines at a frequency of 10 kHz. Fatigue loading caused the development of severe surface roughness that was localized within individual grains which depends severely on grain orientations.

  • PDF

Process-Structure-Property Relationship and its Impact on Microelectronics Device Reliability and Failure Mechanism

  • Tung, Chih-Hang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Microelectronics device performance and its reliability are directly related to and controlled by its constituent materials and their microstructure. Specific processes used to form and shape the materials microstructure need to be controlled in order to achieve the ultimate device performance. Examples of front-end and back-end ULSI processes, packaging process, and novel optical storage materials are given to illustrate such process-structure-property-reliability relationship. As more novel materials are introduced to meet the new requirements for device shrinkage, such under-standing is indispensable for future generation process development and reliability assessment.

Effects of organic additives on YBCO coated conductor prepared by MOD-TFA method (유기첨가제가 MOD-TFA법으로 제조된 YBCO에 미치는 영향)

  • 김영국;유재무;고재웅;허순영
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.90-92
    • /
    • 2003
  • Effects of organic additives on YBCO coated conductor prepared by MOD-TFA method were investigated. YBCO thin films were deposited on (100)-oriented single crystalline LaAlO$_3$substrates by conventional MOD-TFA process. The microstructures of YBCO thin films show labyrinth-like patterns. The origin of this microstructure was delineated by compositional inhomogeneity during the pyrolysis process of MOD process and it was shown that organic additives changes the microstructure and texture development of grown YBCO films

  • PDF

PREDICTION OF MICROSTRUCTURE DURING HIGH TEMPERATURE FORMING OF Ti-6Al-4V ALLOY

  • Lee Y. H.;Shin T. J.;Yeom J. T.;Park N. K.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.43-46
    • /
    • 2003
  • Prediction of final microstructures after high temperature forming of Ti-6Al-4V alloy was attempted in this study. Using two typical microstructures, i.e., equiaxed and $Widmanst\ddot{a}tten$ microstructures, compression test was carried out up to the strain level of 0.6 at various temperatures $(700\~1100^{\circ}C)$ and strain rates $(10^{-4}\~10^2/s)$. From the flow stress-strain data, parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations for both microstructures. Then, finite element analysis was performed to predict the final microstructure of the deformed body, which was well accorded with the experimental results.

  • PDF

The Repeat Heat Treatment Behavior of Double Remelted Fe-Co Ultra-high Strength Steel. - Part. 1 Microstructure Control (Fe-Co기 고인성 고강도강의 반복 열처리 거동 - Part 1. 조직제어)

  • Yoon, Bo-Hee;Park, Kyoung-Tae;Lee, Tae-Hyuk;Kim, Jae-Hoon;Kim, Hong-Kyu;Lee, Seong;Lee, Jong-Hyeon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • In this study, microstructural evaluation was carried out on secondary hardening type ultrahigh strength steel, Fe-Co-Ni composition. This paper as a first part of whole research presented the microstructural behavior by cyclic heat treatment. The cyclic heat treatment method includes normalizing, stress relieving, solution treatment and aging. Especially, solution treatments performed triple times to get maximized solution hardening. Phase transformation and microstructure were observed by using optical microscope (OM), Electron back-scattered diffraction (EBSD) and X-ray stress analyzer. During the triple solution treatment, size of grain boundary was dramatically decreased by generating a packet from the martensite transformation of residual austenite in the inner part of grain, whereas the hardness increase was not significant.

Development of Microstructure and Texture of AZ61 and AZ80 Magnesium Alloys by Hot Rolling (열간압연에 따른 AZ61 및 AZ80 마그네슘 합금의 미세조직 및 집합조직 발달에 대한 연구)

  • Lee, Ji Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • Magnesium alloy is a metal with high specific strength and light weight, and is attracting attention as a next generation metal for environmentally friendly automobiles and transportation equipment. However, magnesium alloys have a problem of degrading formability due to the basal texture developed during processing, and their application is limited. Although active researches on the control of textures have been conducted in order to minimize this problem, there is a lack of research on the formation of microstructures and textures according to elemental differences. In this study, AZ61 and AZ80 magnesium alloys were selected to investigate the effects of aluminum addition on the microstructure development of magnesium alloys. This research has proven that the increase of the rolling rate results in the decrease of the average grain size of the two alloys, the increase of the hardness, and the increase of the fraction of twins. As shown on this research below, the basal texture developed strongly as the rolling ratio increased. On the other hand, this research also has proven that the two alloys exhibited different texture strength and distribution tendencies, which could be due to the effects of aluminum addition on work hardening, grain size, and twin behavior.